机器学习实战学习笔记(二):决策树

决策树优缺点

  • 优点:计算复杂度不高,输出结果易于理解,对中间值的确实不敏感,可以处理不相关特征数据。
  • 缺点:可能会产生过度匹配问题。
  • 适用数据类型:数值型和标称型。

原理

树结构

信息增益

在划分数据集之前之后信息发生的变化称为信息增益。

香农商

集合信息的度量方式称为香农熵或者简称为熵,这个名字来源于信息论之父克劳德.香农。

例子

实际中的应用——预测隐形眼镜类型

隐形眼镜数据集是非常著名的数据集。构造树结构。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值