AI绘画一张图一键生成多风格私人写真 Stable Diffusion人像生成框架

ModelScope更新了开源项目Facechain,最新版本Facecchain-Fact(Face Adapter with deCoupled Training)的新型身份保持框架,该框架 只需1张照片和10秒内,就可以生成多种人物风格私人写真

FaceChain-FACT框架介绍

FaceChain-FACT是一个创新的框架,用于生成能够保持个人身份特征的人像,支持多种风格,并且与ControlNetLoRAs模型无缝兼容。用户可以通过熟悉的WebUI界面轻松操作,生成个性化的写真人像。此外,FaceChain-FACT还具有文本到图像和基于Inpainting的流程,提供了高控制性和真实性。根据Github开源主页内容,能看到ModelScope团队有未来计划包括:开发全身人像生成、加速生成过程、支持更多风格,并提供更多有趣的应用。

FaceChain-FACT架构

对于以人为中心的个性化图像生成,基于适配器的方法通过在面部数据上进行文本到图像的训练来学习编码和对齐输入面部,实现了在推理过程中无需额外微调的身份保持个性化。尽管在效率和与输入面部的相似性方面有所提高,但与没有适配器的基础模型相比,生成面部的文本后续能力以及可控性和多样性通常会显著下降。

在FaceChain-FACT中:

• 研发团队采用执行基于身份引导的面部去噪,而不是面向面部的图像去噪,以进行解耦训练

• 同时在自注意力块和交叉注意力块之间插入顺序面部适配器,在文本引导之前对潜在面部进行适应,通过面部适应增量正则化(FAIR)对潜在变量进行约束,从而避免面部条件与文本信息的干扰。

• 对于要进行去噪的图像,身份条件来自于通过面部洗牌得到的相同身份的面部图像,并通过基于Transformer的特征提取器提取。

FaceChain-FACT体验

ModelScope在魔搭平台提供了在线体验Demo:https://modelscope.cn/studios/CVstudio/FaceChain-FACT/summary/?st=1kaJXs79ZoaTprotmvuK8lQ。

同时也开源了代码可以自由部署体验:https://github.com/modelscope/facechain/tree/main/facechain_adapter

体验输入图像

01. 旗袍风

输入模板

输出效果

02. 藏族服饰风格

输入模板

输出效果

03.婚纱风格

输入模板

输出效果

04. T恤风格

输入模板

输出效果

05. 工作服

输入模板

输出效果

06. 汉服风

输入模板

输出效果

07. 校园风

输入模板

输出效果

08. 苗族风格

输入模板

输出效果

09. 多人模板写真-替换女主

输入模板

输出效果

10. 多人模板写真-替换女主

输入模板

输出效果

资料软件免费放送

次日同一发放请耐心等待

关于AI绘画技术储备

学好 AI绘画 不论是就业还是做副业赚钱都不错,但要学会 AI绘画 还是要有一个学习规划。最后大家分享一份全套的 AI绘画 学习资料,给那些想学习 AI绘画 的小伙伴们一点帮助!

感兴趣的小伙伴,赠送全套AIGC学习资料和安装工具,包含AI绘画、AI人工智能等前沿科技教程,模型插件,具体看下方。

需要的可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

在这里插入图片描述

**一、AIGC所有方向的学习路线**

AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

在这里插入图片描述

二、AIGC必备工具

工具都帮大家整理好了,安装就可直接上手!
在这里插入图片描述

三、最新AIGC学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述
在这里插入图片描述

四、AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述
这份完整版的学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值