免费使用GPU的探索笔记

多种有免费时长的平台
https://www.cnblogs.com/java-note/p/18760386

Kaggle免费使用GPU的探索
https://www.kaggle.com/
注册Kaggle账号
访问Kaggle官网,使用邮箱注册账号。
在这里插入图片描述
在这里插入图片描述
发现gpu都是灰色的
返回home,右上角的头像点开
在这里插入图片描述
验证手机号
再次code-your work返回代码编辑,可以了
提升,每周只有30h,剩余30h在这里插入图片描述
环境类似jupter,测试成功
在这里插入图片描述
上传数据集,参考kaggle GPU资源使用教程——针对超级小白
一定要记得命名
数据集较大的话建议先上传压缩文件,自动解压缩

参考白嫖kaggle算力资源并ssh连接

连接colab(pro用户收费)

(注册账号添加链接描述)
notebook中点击file选择连接colab
在这里插入图片描述
vscode连接到Kaggle服务器邮件gle Colab Integration Updates
[Feature Launch] Do even more with Google Colab notebooks in Kaggle
https://www.kaggle.com/discussions/product-announcements/570265
[Experimental Feature] Connect your Colab notebooks directly to Kaggle’s Jupyter Servers!
https://www.kaggle.com/discussions/product-announcements/567740
[Feature Launch] Importing Notebooks From Code Homepage
https://www.kaggle.com/discussions/product-announcements/572642

<think>好的,我需要帮助用户检查笔记本电脑上的GPU型号和信息。首先,我得考虑用户可能使用的操作系统,因为不同的系统有不同的检查方法。用户可能使用的是Windows、Linux或者macOS,但根据提供的引用内容,引用[3]提到了Linux上的操作,引用[4]提到了配置RTX GPU,可能涉及Windows或Linux。不过用户的问题没有明确说明操作系统,所以我应该覆盖主要的系统。 首先,针对Windows系统。我记得在Windows中,可以通过设备管理器来查看显卡信息。步骤应该是右击“此电脑”选择管理,然后进入设备管理器找到显示适配器。此外,使用任务管理器也是一个快捷方式,特别是较新的Windows版本。另外,DirectX诊断工具(dxdiag)也是一个常用方法,用户可以在运行对话框中输入dxdiag,然后在显示标签页中查看显卡信息。这些方法都比较基础,适合普通用户。 然后是Linux系统。根据引用[3]中的信息,用户可以使用lspci命令来检测NVIDIA GPU,例如lspci | grep -i nvidia,这样可以列出所有NVIDIA相关的设备。此外,还可以使用lsmod检查加载的驱动模块。另外,我还记得有一个工具叫nvidia-smi,如果安装了NVIDIA驱动的话,可以直接运行这个命令查看详细的GPU信息,包括型号、驱动版本、温度等。对于Linux用户来说,这些命令应该比较常用。 对于macOS系统,虽然用户提供的引用中没有提到,但作为全面的回答,应该包括进去。macOS用户可以通过关于本机->系统报告->图形卡/显示器来查看显卡信息。此外,终端里可以使用system_profiler SPDisplaysDataType命令来获取详细信息。 接下来,我需要确保回答的结构清晰,分步骤说明每个操作系统的检查方法。同时要注意用户可能对命令行不太熟悉,所以对于Windows和macOS,提供图形界面的方法会更友好。而对于Linux用户,使用终端命令是更常见的做法,因此需要详细说明这些命令的使用。 另外,根据引用[4],用户可能是在配置深度学习环境时需要检查GPU信息,所以特别提到nvidia-smi命令的重要性,这个命令不仅能显示GPU型号,还能查看显存使用情况和驱动版本,对于使用TensorFlow或PyTorch的用户来说非常有用。因此,在回答中强调这一点可以帮助用户更好地应用这些信息到他们的开发环境中。 还需要注意用户可能的后续问题,比如如何安装驱动或者如何确认驱动是否正确安装,但根据当前问题,主要聚焦在检查型号和信息上,不需要展开其他步骤。但可以提示用户,如果找不到相关信息可能需要安装驱动,比如在Linux中如果没有nvidia-smi可能需要安装NVIDIA驱动。 最后,生成的相关问题应该围绕GPU信息的检查方法、驱动的安装、不同操作系统的区别以及深度学习配置等方面,这样用户如果有进一步的问题,可以方便他们继续探索。</think>要检查笔记本电脑上的GPU型号及信息,可以通过以下分步骤方法实现: ### **1. Windows系统** #### 方法一:设备管理器 - **步骤1**:右击桌面左下角“开始”按钮,选择“设备管理器”。 - **步骤2**:展开“显示适配器”栏目,直接显示当前使用的显卡型号(如NVIDIA GeForce RTX 3060或AMD Radeon RX 6700M)。 #### 方法二:任务管理器 - **步骤1**:按下`Ctrl+Shift+Esc`打开任务管理器。 - **步骤2**:切换到“性能”标签页,左侧选择“GPU”,右侧显示GPU型号、使用率和驱动版本。 #### 方法三:DirectX诊断工具 - **步骤1**:按`Win+R`打开运行窗口,输入`dxdiag`并回车。 - **步骤2**:在“显示”标签页中查看显卡名称、制造商和显存信息[^4]。 --- ### **2. Linux系统** #### 方法一:终端命令`lspci` - **步骤1**:打开终端,输入以下命令检测NVIDIA GPU: ```bash lspci | grep -i "nvidia" ``` 输出会显示显卡型号(如`NVIDIA Corporation TU117M [GeForce GTX 1650 Mobile]`)[^3]。 #### 方法二:检查驱动加载状态 - **步骤1**:输入以下命令确认驱动是否加载: ```bash lsmod | grep nvidia ``` 若输出包含`nvidia`模块,则表示驱动已正确加载。 #### 方法三:使用`nvidia-smi` - **步骤1**:安装NVIDIA驱动后,输入: ```bash nvidia-smi ``` 输出包含GPU型号、温度、显存使用及驱动版本(深度学习用户常用此命令监控GPU状态)[^4]。 --- ### **3. macOS系统** #### 方法一:系统报告 - **步骤1**:点击左上角苹果图标,选择“关于本机”。 - **步骤2**:点击“系统报告”,在“硬件”部分选择“图形卡/显示器”,查看GPU详细信息。 #### 方法二:终端命令 - **步骤1**:打开终端,输入: ```bash system_profiler SPDisplaysDataType ``` 输出包含显卡型号、显存大小和分辨率信息。 --- ### **注意事项** - 若未检测到独立GPU,可能是驱动未安装或双显卡切换未启用(参考引用[^1]中的双显卡切换设置)。 - 深度学习场景需确认CUDA兼容性,可通过`nvidia-smi`顶部显示的CUDA版本检查[^2]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值