import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from IPython.display import Image
%matplotlib inline#%matplotlib inline 可以在Ipython编译器里直接使用,功能是可以内嵌绘图,并且可以省略掉plt.show()这一步
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
plt.rcParams['figure.figsize'] = (10, 6) # 设置输出图片大小
#清洗过的
df = pd.read_csv('clear_data.csv')
df.head()
df.shape#shape查看矩阵或者数组的维数
#清洗前的
data = pd.read_csv('train.csv')
data.head()
#清洗后的只有数值型数据
1.模型搭建
任务一:切割训练集和测试集
这里使用留出法划分数据集
- 将数据集分为自变量和因变量
- 按比例切割训练集和测试集(一般测试集的比例有30%、25%、20%、15%和10%)
- 使用分层抽样
- 设置随机种子以便结果能复现
train_test_split查阅https://www.cnblogs.com/Yanjy-OnlyOne/p/11288098.html from sklearn.model_selection import train_test_split X = df y = data['Survived'] X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, random_state=0) # 查看数据形状 X_train.shape, X_test.shape
-
任务二:模型创建
- 创建基于线性模型的分类模型(逻辑回归)
- 创建基于树的分类模型(决策树、随机森林)
- 分别使用这些模型进行训练,分别的到训练集和测试集的得分
- 查看模型的参数,并更改参数值,观察模型变化
scikit-learn (sklearn) 官方文档中文版:https://sklearn.apachecn.org/#/docs/2?id=_11-%e5%b9%bf%e4%b9%89%e7%ba%bf%e6%80%a7%e6%a8%a1%e5%9e%8b
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
# 默认参数逻辑回归模型
lr = LogisticRegression()
lr.fit(X_train, y_train)
# 查看训练集和测试集score值
print("Training set score: {:.2f}".format(lr.score(X_train, y_train)))
print("Testing set score: {:.2f}".format(lr.score(X_test, y_test)))
#修改参数后的逻辑回归模型
lr2 = LogisticRegression(C=100)
lr2.fit(X_train, y_train)
print("Training set score: {:.2f}".format(lr2.score(X_train, y_train)))
print("Testing set score: {:.2f}".format(lr2.score(X_test, y_test)))
# 默认参数的随机森林分类模型
rfc = RandomForestClassifier()
rfc.fit(X_train, y_train)
print("Training set score: {:.2f}".format(rfc2.score(X_train, y_train)))
print("Testing set score: {:.2f}".format(rfc2.score(X_test, y_test)))
任务三:输出模型预测结果
- 输出模型预测分类标签
- 输出不同分类标签的预测概率
# 预测标签 pred = lr.predict(X_train) pred[:10] # 预测标签概率 pred_proba = lr.predict_proba(X_train) pred_proba[:10]
2.模型评估
#任务:加载数据并分割测试集和训练集 from sklearn.model_selection import train_test_split data = pd.read_csv('clear_data.csv') train = pd.read_csv('train.csv') X = data y = train['Survived'] X_train,X_test,y_train,y_test = train_test_split(X,y,stratify=y,random_state=0) #默认参数逻辑回归模型 lr = LogisticRegression() lr.fit(X_train,y_train)
模型评估
- 模型评估是为了知道模型的泛化能力。
- 交叉验证(cross-validation)是一种评估泛化性能的统计学方法,它比单次划分训练集和测试集的方法更加稳定、全面。
- 在交叉验证中,数据被多次划分,并且需要训练多个模型。
- 最常用的交叉验证是 k 折交叉验证(k-fold cross-validation),其中 k 是由用户指定的数字,通常取 5 或 10。
- 准确率(precision)度量的是被预测为正例的样本中有多少是真正的正例
- 召回率(recall)度量的是正类样本中有多少被预测为正类
- f-分数是准确率与召回率的调和平均
总结:不懂,以后学习这一块
任务一:交叉验证
- 用10折交叉验证来评估之前的逻辑回归模型
- 计算交叉验证精度的平均值
from sklearn.model_selection import cross_val_score lr = LogisticRegression(C=100) scores = cross_val_score(lr,X_train,y_train,cv=10) #k折交叉验证分数 scores #平均交叉验证分数 print('Average cross-validation score:{:.2f}'.format(scores.mean()))
任务二:混淆矩阵
- 计算二分类问题的混淆矩阵
- 计算精确率、召回率以及f-分数
【思考】什么是二分类问题的混淆矩阵,理解这个概念,知道它主要是运算到什么任务中的 https://blog.csdn.net/Orange_Spotty_Cat/article/details/80520839
from sklearn.metrics import confusion_matrix lr = LogisticRegression(C=100) lr.fit(X_train,y_train) pred = lr.predict(X_train) confusion_matrix(y_train,pred) from sklearn.metrics import classification_report # 精确率、召回率以及f1-score print(classification_report(y_train,pred))
任务三:ROC曲线
- 绘制ROC曲线
#ROC曲线 https://blog.csdn.net/qq_26591517/article/details/80092679
from sklearn.metrics import roc_curve fpr, tpr, thresholds = roc_curve(y_test, lr.decision_function(X_test)) plt.plot(fpr, tpr, label="ROC Curve") plt.xlabel("FPR") plt.ylabel("TPR (recall)") # 找到最接近于0的阈值 close_zero = np.argmin(np.abs(thresholds)) plt.plot(fpr[close_zero], tpr[close_zero], 'o', markersize=10, label="threshold zero", fillstyle="none", c='k', mew=2) plt.legend(loc=4)
总结:这块内容太难懂,还得多看看