数据建模及模型评估

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from IPython.display import Image
%matplotlib inline#%matplotlib inline 可以在Ipython编译器里直接使用,功能是可以内嵌绘图,并且可以省略掉plt.show()这一步
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
plt.rcParams['figure.figsize'] = (10, 6)  # 设置输出图片大小
#清洗过的
df = pd.read_csv('clear_data.csv')
df.head()
df.shape#shape查看矩阵或者数组的维数
#清洗前的
data = pd.read_csv('train.csv')
data.head()
#清洗后的只有数值型数据

1.模型搭建

任务一:切割训练集和测试集

这里使用留出法划分数据集

  • 将数据集分为自变量和因变量
  • 按比例切割训练集和测试集(一般测试集的比例有30%、25%、20%、15%和10%)
  • 使用分层抽样
  • 设置随机种子以便结果能复现
    train_test_split查阅https://www.cnblogs.com/Yanjy-OnlyOne/p/11288098.html
    from sklearn.model_selection import train_test_split
    X = df
    y = data['Survived']
    X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, random_state=0)
    # 查看数据形状
    X_train.shape, X_test.shape
  • 任务二:模型创建

  • 创建基于线性模型的分类模型(逻辑回归)
  • 创建基于树的分类模型(决策树、随机森林)
  • 分别使用这些模型进行训练,分别的到训练集和测试集的得分
  • 查看模型的参数,并更改参数值,观察模型变化
scikit-learn (sklearn) 官方文档中文版:https://sklearn.apachecn.org/#/docs/2?id=_11-%e5%b9%bf%e4%b9%89%e7%ba%bf%e6%80%a7%e6%a8%a1%e5%9e%8b
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
# 默认参数逻辑回归模型
lr = LogisticRegression()
lr.fit(X_train, y_train)
# 查看训练集和测试集score值
print("Training set score: {:.2f}".format(lr.score(X_train, y_train)))
print("Testing set score: {:.2f}".format(lr.score(X_test, y_test)))
#修改参数后的逻辑回归模型
lr2 = LogisticRegression(C=100)
lr2.fit(X_train, y_train)
print("Training set score: {:.2f}".format(lr2.score(X_train, y_train)))
print("Testing set score: {:.2f}".format(lr2.score(X_test, y_test)))
# 默认参数的随机森林分类模型
rfc = RandomForestClassifier()
rfc.fit(X_train, y_train)
print("Training set score: {:.2f}".format(rfc2.score(X_train, y_train)))
print("Testing set score: {:.2f}".format(rfc2.score(X_test, y_test)))

任务三:输出模型预测结果

  • 输出模型预测分类标签
  • 输出不同分类标签的预测概率
    # 预测标签
    pred = lr.predict(X_train)
    pred[:10]
    # 预测标签概率
    pred_proba = lr.predict_proba(X_train)
    pred_proba[:10]
    

    2.模型评估

    #任务:加载数据并分割测试集和训练集
    from sklearn.model_selection import train_test_split
    data = pd.read_csv('clear_data.csv')
    train = pd.read_csv('train.csv')
    X = data
    y = train['Survived']
    X_train,X_test,y_train,y_test = train_test_split(X,y,stratify=y,random_state=0)
    #默认参数逻辑回归模型
    lr = LogisticRegression()
    lr.fit(X_train,y_train)

    模型评估

  • 模型评估是为了知道模型的泛化能力。
  • 交叉验证(cross-validation)是一种评估泛化性能的统计学方法,它比单次划分训练集和测试集的方法更加稳定、全面。
  • 在交叉验证中,数据被多次划分,并且需要训练多个模型。
  • 最常用的交叉验证是 k 折交叉验证(k-fold cross-validation),其中 k 是由用户指定的数字,通常取 5 或 10。
  • 准确率(precision)度量的是被预测为正例的样本中有多少是真正的正例
  • 召回率(recall)度量的是正类样本中有多少被预测为正类
  • f-分数是准确率与召回率的调和平均
    总结:不懂,以后学习这一块

    任务一:交叉验证

  • 用10折交叉验证来评估之前的逻辑回归模型
  • 计算交叉验证精度的平均值
    from sklearn.model_selection import cross_val_score
    lr = LogisticRegression(C=100)
    scores = cross_val_score(lr,X_train,y_train,cv=10)
    #k折交叉验证分数
    scores
    #平均交叉验证分数
    print('Average cross-validation score:{:.2f}'.format(scores.mean()))

    任务二:混淆矩阵

  • 计算二分类问题的混淆矩阵
  • 计算精确率、召回率以及f-分数
    【思考】什么是二分类问题的混淆矩阵,理解这个概念,知道它主要是运算到什么任务中的
    https://blog.csdn.net/Orange_Spotty_Cat/article/details/80520839
    from sklearn.metrics import confusion_matrix
    lr = LogisticRegression(C=100)
    lr.fit(X_train,y_train)
    pred = lr.predict(X_train)
    confusion_matrix(y_train,pred)
    from sklearn.metrics import classification_report
    # 精确率、召回率以及f1-score
    print(classification_report(y_train,pred))

    任务三:ROC曲线

  • 绘制ROC曲线
    #ROC曲线
    https://blog.csdn.net/qq_26591517/article/details/80092679
    from sklearn.metrics import roc_curve
    fpr, tpr, thresholds = roc_curve(y_test, lr.decision_function(X_test))
    plt.plot(fpr, tpr, label="ROC Curve")
    plt.xlabel("FPR")
    plt.ylabel("TPR (recall)")
    # 找到最接近于0的阈值
    close_zero = np.argmin(np.abs(thresholds))
    plt.plot(fpr[close_zero], tpr[close_zero], 'o', markersize=10, label="threshold zero", fillstyle="none", c='k', mew=2)
    plt.legend(loc=4)

    总结:这块内容太难懂,还得多看看

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值