个人觉得,能做一道经典的题并理解透彻,往往比做对难度系数很大的题目更有意义。最近又训练了博弈,记录一些题目,来个小总结。
hdu 3032 Nim or not Nim?
http://acm.hdu.edu.cn/showproblem.php?pid=3032
大意:和普通的nim游戏相比,这里新添加了一种操作,可以把数字分成更小的两份。
分析:
sg[0]=0
当i=1,取走1后剩下0,mex[1]=1. sg[1]=1
当i=2时,可以取1,2,剩下1,0,sg[1]=1,sg[0]=0,分解成1+1,sg[1]^sg[1]=0,即分解相同的两部分和取走全部的效果是一样的。mex(2)=2 sg[2]=2
当i=3时,可以取1,2,3,剩下2,1,0,sg[2]=2, sg[1]=1, sg[0]=0,分解: sg[1]^sg[2]=3,所以mex(3)=4. sg[3]=4
当i=4时,取:1,2,3,4,剩下:sg[3]=4, sg[2]=2, sg[1]=1, sg[0]=0, 分解: sg[1]^sg[3]=5 mex(5)=3. sg[4]=3.
打表:
int sg[N];
bool vis[N];
void init(int n){
int i,j;
for(i=2;i<n;i++){
memset(vis,0,sizeof(vis));
for(j=1;j<=n;j++) vis[sg[i-j]]=1; // 取
for(j=1;j+j<=n;j++) vis[sg[j]^sg[i-j]]=1; // 分解
j=0;
while(vis[j]) j++;
sg[i]=j;
}
}
/*
1: 1
2: 2
3: 4
4: 3
5: 5
6: 6
7: 8
8: 7
9: 9
10: 10
11: 12
12: 11
13: 13
14: 14
15: 16
16: 15
17: 17
18: 18
19: 20
20: 19
21: 21
22: 22
23: 24
24: 23
*/
得到规律:
sg[4n+3]=4n+4
sg[4n]=4n-1
sg[i]=i
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
int main()
{
//freopen("cin.txt","r",stdin);
int n,t;
cin>>t;
while(t--){
scanf("%d",&n);
int a,ans=0;
for(int i=0;i<n;i++){
scanf("%d",&a);
if((a&3)==3) { // a%4==3
ans=ans^(a+1);
}
else if((a&3)==0){ // a%4==0
ans=ans^(a-1);
}
else ans=ans^a;
}
if(ans) puts("Alice");
else puts("Bob");
}
return 0;
}
acdream 1112 Alice and Bob
http://acdream.info/problem?pid=1112
大意:给出一堆数字,每一个数字可以被不是它本身的约数(包括1)替代,或者分解成两个约数。比如6可以变成:2, 3, (2,3)
分析:一开始使用直接分解计算的方法果断超时。事实上这个问题完全可以从另一个角度看&