你是一个一个一个毒瘤线性代数作业题啊啊啊啊啊啊啊啊啊啊啊啊

被线性代数搞爆心态了,就记一些遇到的毒瘤题(

1.计算 ∣ 7 2 2 2 2 2 7 2 2 2 2 2 7 2 2 2 2 2 7 2 2 2 2 2 7 ∣ \begin{vmatrix}7&2&2&2&2 \\2&7&2&2&2\\2&2&7&2&2\\2&2&2&7&2\\2&2&2&2&7\end{vmatrix} 7222227222227222227222227
用的是书上例9的方法,把最后一行的7分拆成2+5,2分拆成2+0.
D n = ∣ 7 2 2 . . . 2 2 7 2 . . . 2 2 2 7 . . . 2 . . . . . . . . . . . . 2 2 2 . . . 7 ∣ n D_n=\begin{vmatrix}7&2&2&...&2 \\2&7&2&...&2\\2&2&7&...&2\\...&...&...&&...\\2&2&2&...&7\end{vmatrix}_n Dn= 722...2272...2227...2............222...7 n = ∣ 7 2 . . . 2 2 7 . . . 2 . . . . . . . . . 2 2 . . . 2 ∣ n + ∣ 7 2 . . . 2 2 7 . . . 2 . . . . . . . . . 0 0 . . . 5 ∣ n =\begin{vmatrix}7&2&...&2\\2&7&...&2\\...&...&&...\\2&2&...&2\end{vmatrix}_n+\begin{vmatrix}7&2&...&2\\2&7&...&2\\...&...&&...\\0&0&...&5\end{vmatrix}_n = 72...227...2.........22...2 n+ 72...027...0.........22...5 n
= ∣ 5 0 . . . 2 0 5 . . . 2 . . . . . . . . . 0 0 . . . 2 ∣ n + 5 ∣ 7 2 . . . 2 2 7 . . . 2 . . . . . . . . . 2 2 . . . 2 ∣ n − 1 =\begin{vmatrix}5&0&...&2\\0&5&...&2\\...&...&&...\\0&0&...&2\end{vmatrix}_n+5\begin{vmatrix}7&2&...&2\\2&7&...&2\\...&...&&...\\2&2&...&2\end{vmatrix}_{n-1} = 50...005...0.........22...2 n+5 72...227...2.........22...2 n1
D n = 5 D n − 1 + 2 ∗ 5 n − 1 D_n=5D_{n-1}+2*5^{n-1} Dn=5Dn1+25n1,迭代得到通项 D n = ( 2 n + 5 ) 5 n − 1 D_n=(2n+5)5^{n-1} Dn=(2n+5)5n1
(也可以直接套书上的公式, a = 2 , x i = 1 a=2,x_i=1 a=2,xi=1 ∏ i = 1 n x i + a ∑ i = 1 n ∏ j = 1 , j ≠ i n x j = 5 n + 2 n ∗ 5 n − 1 \prod\limits_{i=1}^nx_i+a\sum\limits_{i=1}^n\prod\limits_{j=1,j\not=i}^nx_j=5^n+2n*5^{n-1} i=1nxi+ai=1nj=1,j=inxj=5n+2n5n1
代入 D 5 = 9375 D_5=9375 D5=9375

2.计算 ∣ x y 0 . . . 0 0 0 x y . . . 0 0 0 0 x . . . 0 0 . . . . . . . . . . . . . . . 0 0 0 . . . x y y 0 0 . . . 0 x ∣ n \begin{vmatrix}x&y&0&...&0&0\\0&x&y&...&0&0\\0&0&x&...&0&0\\...&...&...&&...&...\\0&0&0&...&x&y\\y&0&0&...&0&x\end{vmatrix}_n x00...0yyx0...000yx...00...............000...x0000...yx n
把最后一行的y分拆成y+0,x分拆成0+x,于是最后一行含y的行列式那一行只有y,含x的行列式变成了倒三角形。
原式 = ∣ x y 0 . . . 0 0 0 x y . . . 0 0 0 0 x . . . 0 0 . . . . . . . . . . . . . . . 0 0 0 . . . x y y 0 0 . . . 0 0 ∣ n + ∣ x y 0 . . . 0 0 0 x y . . . 0 0 0 0 x . . . 0 0 . . . . . . . . . . . . . . . 0 0 0 . . . x y 0 0 0 . . . 0 x ∣ n =\begin{vmatrix}x&y&0&...&0&0\\0&x&y&...&0&0\\0&0&x&...&0&0\\...&...&...&&...&...\\0&0&0&...&x&y\\y&0&0&...&0&0\end{vmatrix}_n+\begin{vmatrix}x&y&0&...&0&0\\0&x&y&...&0&0\\0&0&x&...&0&0\\...&...&...&&...&...\\0&0&0&...&x&y\\0&0&0&...&0&x\end{vmatrix}_n = x00...0yyx0...000yx...00...............000...x0000...y0 n+ x00...00yx0...000yx...00...............000...x0000...yx n
= y ∗ ( − 1 ) n + 1 ∗ ∣ y 0 . . . 0 0 x y . . . 0 0 0 x . . . 0 0 . . . . . . . . . . . . 0 0 . . . x y ∣ n − 1 + x n = x n + ( − 1 ) n + 1 y n =y*(-1)^{n+1}*\begin{vmatrix}y&0&...&0&0\\x&y&...&0&0\\0&x&...&0&0\\...&...&&...&...\\0&0&...&x&y\end{vmatrix}_{n-1}+x^n=x^n+(-1)^{n+1}y^n =y(1)n+1 yx0...00yx...0............000...x000...y n1+xn=xn+(1)n+1yn

3.计算 ∣ 0 1 0 0 . . . 0 0 1 0 1 0 . . . 0 0 0 1 0 1 . . . 0 0 0 0 1 0 . . . 0 0 . . . . . . . . . . . . . . . . . . 0 0 0 0 . . . 0 1 0 0 0 0 . . . 1 0 ∣ n \begin{vmatrix}0&1&0&0&...&0&0\\1&0&1&0&...&0&0\\0&1&0&1&...&0&0\\0&0&1&0&...&0&0\\...&...&...&...&&...&...\\0&0&0&0&...&0&1\\0&0&0&0&...&1&0\end{vmatrix}_n 0100...001010...000101...000010...00..................0000...010000...10 n
发现第一行和最后一行都只有一个数,其它行都只有两个数。在行列式的表达式中,想让乘积不为0,第一行只能取第2列的元素。由于相同列不能取两个元素,所以第3行只能取第4列的元素,同理第5行只能取第6列的元素,以此类推。
n n n是奇数时,第 n − 2 n-2 n2行只能取第 n − 1 n-1 n1列的元素,那么第 n n n列无论怎么取乘积都是0,所以行列式的值为0.
n n n是偶数时,第奇数行只能取(行数+1)列的元素。仿照刚刚的取法,再从第 n n n行往前取,可知第偶数行只能取第(行数-1)列的元素。因此行列式的值为 ( − 1 ) n 2 (-1)^\frac{n}{2} (1)2n。( 214365... n ( n − 1 ) 214365...n(n-1) 214365...n(n1)的逆序数为 n 2 \frac{n}{2} 2n

4.用Cramer法则求解方程组:
{ x + y + z = 1 x + ϵ y + ϵ 2 z = ϵ x + ϵ 2 y + ϵ z = ϵ 2 \begin{cases}x+y+z=1\\x+\epsilon y+\epsilon^2z=\epsilon\\x+\epsilon^2y+\epsilon z=\epsilon^2\end{cases} x+y+z=1x+ϵy+ϵ2z=ϵx+ϵ2y+ϵz=ϵ2
其中 ϵ \epsilon ϵ为三次单位原根,即 ϵ ≠ 1 \epsilon\not=1 ϵ=1 ϵ 3 = 1 \epsilon^3=1 ϵ3=1的复数。
系数矩阵的行列式: D = ∣ 1 1 1 1 ϵ ϵ 2 1 ϵ 2 ϵ ∣ D=\begin{vmatrix}1&1&1\\1&\epsilon&\epsilon^2\\1&\epsilon^2&\epsilon\end{vmatrix} D= 1111ϵϵ21ϵ2ϵ 。由于 ϵ 3 = 1 \epsilon^3=1 ϵ3=1,所以右下角 ϵ = ϵ 4 \epsilon=\epsilon^4 ϵ=ϵ4,那么这个行列式是一个范德蒙德行列式,则 D = ( ϵ − 1 ) ( ϵ 2 − 1 ) ( ϵ 2 − ϵ ) ≠ 0 D=(\epsilon-1)(\epsilon^2-1)(\epsilon^2-\epsilon)\not=0 D=(ϵ1)(ϵ21)(ϵ2ϵ)=0。因此该方程组有唯一解。
接下来分别求 x , y , z x,y,z x,y,z
x = D 1 D x=\frac{D_1}{D} x=DD1,其中 D 1 = ∣ 1 1 1 ϵ ϵ ϵ 2 ϵ 2 ϵ 2 ϵ ∣ = 0 D_1=\begin{vmatrix}1&1&1\\\epsilon&\epsilon&\epsilon^2\\\epsilon^2&\epsilon^2&\epsilon\end{vmatrix}=0 D1= 1ϵϵ21ϵϵ21ϵ2ϵ =0,则 x = 0 x=0 x=0
y = D 2 D y=\frac{D_2}{D} y=DD2,其中 D 2 = ∣ 1 1 1 1 ϵ ϵ 2 1 ϵ 2 ϵ ∣ = D D_2=\begin{vmatrix}1&1&1\\1&\epsilon&\epsilon^2\\1&\epsilon^2&\epsilon\end{vmatrix}=D D2= 1111ϵϵ21ϵ2ϵ =D,则 y = 1 y=1 y=1
z = D 3 D z=\frac{D_3}{D} z=DD3,其中 D 3 = ∣ 1 1 1 1 ϵ ϵ 1 ϵ 2 ϵ 2 ∣ = 0 D_3=\begin{vmatrix}1&1&1\\1&\epsilon&\epsilon\\1&\epsilon^2&\epsilon^2\end{vmatrix}=0 D3= 1111ϵϵ21ϵϵ2 =0,则 z = 0 z=0 z=0
因此该方程组有唯一解 x = 0 , y = 1 , z = 0. x=0,y=1,z=0. x=0,y=1,z=0.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值