判断数据是否符合正态分布常用的function

本文介绍了Python中四种判断数据是否符合正态分布的常用方法:1) QQ-PLOT,通过比较观测值和期望值判断统计模型合理性;2) 使用`pd.hist()`绘制直方图观察数据分布;3) Shapiro-Wilk检验;4) normaltest()检验。偏度和峰度也是评估正态性的关键指标。

判断数据正态性常用的function:

1、QQ-PLOT(quantile-quantile plot): p-value观测值和p-value期望值的比较,用于判断统计模型的合理性。

参考文献:QQ-PLOT原理详解

import statsmodels.api as sm
sm.qqplot(diff_result_data_df.loc[:,'clicks_diff'], line='q')
plt.title('click diff QQ-plot')

在这里插入图片描述
观测值分布(蓝点)和正态分布线(红色直线)的吻合程

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值