判断数据正态性常用的function:
1、QQ-PLOT(quantile-quantile plot): p-value观测值和p-value期望值的比较,用于判断统计模型的合理性。
参考文献:QQ-PLOT原理详解
import statsmodels.api as sm
sm.qqplot(diff_result_data_df.loc[:,'clicks_diff'], line='q')
plt.title('click diff QQ-plot')

观测值分布(蓝点)和正态分布线(红色直线)的吻合程

本文介绍了Python中四种判断数据是否符合正态分布的常用方法:1) QQ-PLOT,通过比较观测值和期望值判断统计模型合理性;2) 使用`pd.hist()`绘制直方图观察数据分布;3) Shapiro-Wilk检验;4) normaltest()检验。偏度和峰度也是评估正态性的关键指标。
最低0.47元/天 解锁文章
1076

被折叠的 条评论
为什么被折叠?



