深度学习自学(十九):caffe添加深度可分离卷积

下面是两种不同的深度可分离卷积的实现方式,自己在训练关键点模型,采用MobileNet 添加深度可分离卷积,发现有两种不同的可分离卷积的实现,名字不相同,但是内部都是深度可分离。DepthwiseConvolutionConvolutionDepthwise两种都训练过,结果相差不大,都可以通过NCNN转换在移动端嵌入式设备上运行。

一、DepthwiseConvolution

github地址:https://github.com/yonghenglh6/DepthwiseConvolution

二、ConvolutionDepthwise

github地址:https://github.com/farmingyard/caffe-mobilenet

三、配置流程

如下是配置流程:下载并添加现有的cpp和hpp到src和include目录并重新编译。

https://blog.csdn.net/qq_38451119/article/details/82663649

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值