keras深度可分离卷积SeparableConv2D与DepthwiseConv2D

本文介绍了Keras中深度可分离卷积的两种实现方式:SeparableConv2D和DepthwiseConv2D。深度可分离卷积包括深度方向的空间卷积和逐点卷积。DepthwiseConv2D仅实现深度方向的空间卷积,而SeparableConv2D则执行整个深度分离卷积过程。文章通过参数解析和实例展示了这两种卷积层的使用方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

keras中的深度可分离卷积有 SeparableConv2D与DepthwiseConv2D两种方式实现。

可分离卷积分为两步:1、深度方向的空间卷积

                                    2、将通道进行混合的逐点卷积

传统卷积

深度可分离卷积

深度方向卷积

 

逐点卷积

 DepthwiseConv2D仅仅实现前半部分的深度方向空间卷积

keras.layers.DepthwiseConv2D( kernel_size,
                              strides=(1, 1),
                              padding='valid',
                              depth_multiplier=1,
                              data_format=None, 
                              activation=None, 
                              use_bias=True, 
                              depthwise_initializer='glorot_uniform', 
                              bias_initializer='zeros',
                              depthwise_regularizer=None, 
                              bias_regularizer=None,
                              activity_regularizer=None, 
                              depthwise_constraint=None,
                              bias_constraint=None
                            )

参数: 

  • kernel_size: 一个整数,或者 2 个整数表示的元组或列表, 指明 2D 卷积窗口的高度和宽度。 可以是一个整数,为所有空间维度指定相同的值。
  • strides: 一个整数,或者 2 个整数表示的元组或列表, 指明卷积沿高度和宽度方向的步长。 可以是一个整数,为所有空间维度指定相同的值。 指定任何 stride 值 != 1 与指定 dilation_rate值 != 1 两者不兼容。
  • padding"valid" 或 "same" (大小写敏感)。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值