leetcode32-最长有效括号
给定一个只包含 ‘(’ 和 ‘)’ 的字符串,找出最长的包含有效括号的子串的长度。
示例1:
输入: "(()"
输出: 2
解释: 最长有效括号子串为 "()"
示例2:
输入: ")()())"
输出: 4
解释: 最长有效括号子串为 "()()"
题解
动态规划(官方题解)
这个问题可以通过动态规划解决。我们定义一个 dp 数组,其中第 i 个元素表示以下标为 i 的字符结尾的最长有效子字符串的长度。我们将 dp 数组全部初始化为 0 。现在,很明显有效的子字符串一定以 ‘)’ 结尾。这进一步可以得出结论:以 ‘(’ 结尾的子字符串对应的 dp 数组位置上的值必定为 0 。所以说我们只需要更新 ‘)’ 在 dp 数组中对应位置的值。
为了求出 dp 数组,我们每两个字符检查一次,如果满足如下条件:
-
s[i]=‘)’ 且 s[i−1]=‘(’ ,也就是字符串形如"…()",我们可以推出:
d p [ i ] = d p [ i − 2 ] + 2 dp[i]=dp[i−2]+2 dp[i]=dp[i−2]+2
我们可以进行这样的转移,是因为结束部分的 “()” 是一个有效子字符串,并且将之前有效子字符串的长度增加了 2 。 -
s[i]=‘)’ 且 s[i−1]=‘)’,也就是字符串形如 “…))”,我们可以推出
如果 s[i−dp[i−1]−1]=‘(’ ,那么
d p [ i ] = d p [ i − 1 ] + d p [ i − d p [ i − 1 ] − 2 ] + 2 dp[i]=dp[i−1]+dp[i−dp[i−1]−2]+2 dp[i]=dp[i−1]+dp[i−dp[i−1]−2]+2
这背后的原因是如果倒数第二个‘)’ 是一个有效子字符串的一部分(记为
s
u
b
s
sub_s
subs),对于最后一个‘)’ ,如果它是一个更长子字符串的一部分,那么它一定有一个对应的‘(’ ,它的位置在倒数第二个‘)’ 所在的有效子字符串的前面(也就是
s
u
b
s
sub_s
subs的前面)。因此,如果子字符串
s
u
b
s
sub_s
subs的前面恰好是 ‘(’ ,那么我们就用 2 加上
s
u
b
s
sub_s
subs的长度(dp[i−1])去更新dp[i]。除此以外,我们也会把有效子字符串 “
(
,
s
u
b
s
,
)
(,sub_s,)
(,subs,)”
,)"之前的有效子字符串的长度也加上,也就是加上dp[i−dp[i−1]−2]。
作者:LeetCode
链接:https://leetcode-cn.com/problems/longest-valid-parentheses/solution/zui-chang-you-xiao-gua-hao-by-leetcode/
来源:力扣(LeetCode)
class Solution {
public:
int longestValidParentheses(string s) {
// #dp法
int count=0;
int Slen=s.size();
if(Slen==0) return 0;
int dp[Slen]={0};
for(int i=1;i<Slen;i++){
if(s[i]==')'){
if(s[i-1]=='('){
dp[i]=(i>=2?dp[i-2]:0)+2;
}else if(i-dp[i-1]>0 && s[i-dp[i-1]-1]=='('){
dp[i]=dp[i-1]+((i-dp[i-1])>=2?dp[i-dp[i-1]-2]:0)+2;
}
}
count = max(count,dp[i]);
}
return count;
}
};