Voronoi多边形和Delaunay三角剖分

本文介绍了计算几何中的Voronoi多边形(泰森多边形)和Delaunay三角剖分概念。泰森多边形基于离散点构建,确保每个多边形内只有一个点且距离该点最近。Delaunay三角网是泰森多边形构建的基础,满足空圆特性和最大化最小角特性。内容包括泰森多边形的特性、Delaunay边与三角剖分定义,以及使用scipy实现Delaunay的例子。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

今天对计算几何中的Voronoi多边形(即泰森多边形)和Delaunay三角剖分进行了学习,整理资料如下(摘自百度百科)。

泰森多边形法,美国气候学家A·H·Thiessen提出了一种根据离散分布的气象站的降雨量来计算平均降雨量的方法,即将所有相邻气象站连成三角形,作这些三角形各边的垂直平分线,于是每个气象站周围的若干垂直平分线便围成一个多边形。用这个多边形内所包含的一个唯一气象站的降雨强度来表示这个多边形区域内的降雨强度,并称这个多边形为泰森多边形。如图,其中虚线构成的多边形就是泰森多边形。泰森多边形每个顶点是每个三角形的外接圆圆心。泰森多边形也称为Voronoi图。

泰森多边形的特性:

1、每个泰森多边形内仅含有一个离散点数据;
2、泰森多边形内的点到相应离散点的距离最近;
3、位于泰森多边形边上的点到其两边的离散点的距离相等。

在泰森多边形的构建中,首先要将离散点构成三角网。这种三角网称为Delaunay三角网。

定义 Delaunay边:假设E中的一条边e(两个端点为a,b),e若满足下列条件,则称之

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值