变分法入门介绍
读完这篇博文你可以了解变分的基本概念,以及使用变分法求解最简泛函的极值。本文没有严密的数学证明,只是感性地对变分法做一个初步了解。
泛函和变分法
给定两点 A ( x 0 , y 0 ) A(x_0, y_0) A(x0,y0)和 B ( x 1 , y 1 ) B(x_1, y_1) B(x1,y1),求AB两点之间的最短距离。两点之间直线最短,这还用球吗?可是为什么是直线最短呢,而不是其它曲线?
设链接AB两点的曲线为 f ( x ) f(x) f(x),则AB之间的距离可以表示为在区间 [ x 0 , x 1 ] [x_0, x_1] [x0,x1]上求 Δ S = ( Δ x ) 2 + ( Δ y ) 2 \Delta{S}=\sqrt{(\Delta{x})^2 + (\Delta{y})^2} ΔS=(Δx)2+(Δy)2线段的累积长度(积分的思想):
S = ∫ x 0 x 1 1 + f ′ ( x ) 2 d x S=\int_{x_0}^{x_1}\sqrt{1+f'(x)^2}dx S=∫x0x11+f′(x)2dx
在这里该函数的变量是 f f f,即函数的变量为函数,我们需要求解出合适的 f f f使得 S S S最小。我们把这样的函数 S S S称为泛函数。
定义:泛函是以函数为变量的函数。
那么什么是变分法呢?求泛函极值的方法称为变分法。
变分法求泛函极值
变分的定义
下面给出变分的定义:对于任意定值 x ∈ [ x 0 , x 1 ] x\in [x_0, x_1] x∈[x0,x1],可取函数 y ( x ) y(x) y(x)与另一可取函数 y 0 ( x ) y_0(x) y0(x)之差 y ( x ) − y 0 ( x ) y(x) - y_0(x) y(x)−y0(x)称为函数 y ( x ) y(x) y(x)在 y 0 ( x ) y_0(x) y0(x)处的变分或函数的变分,记做 δ y \delta{y} δy,这时有 δ y = y ( x