Morton码

版权声明:本文为博主原创文章,转载请注明原文出处!

写作时间:2019-07-08 17:11:27


Morton码的计算

Morton码是对栅格格网进行编码的一种算法,在Google中搜索Morton,搜索结果第一位是Wikipedia的Z-order Curve,这是因为Morton码编码结果展现为一种Z形的填充曲线。下面简要说一下如何计算四进制和十进制的Morton码。

Morton码

四进制Morton码计算

四进制编码对左上,右上,左下,右下的顺序对四个格网单元分布编码为0,1,2,3。

其计算方式为:二进制的行列号 r r r l l l(从第0行0列开始),四进制编码 M = 2 ∗ l + r M=2*l+ r M=2l+r;那么这里就是:第5行(101)第7列(111): M = 2 ∗ 101 + 111 = 313 M=2*101+111=313 M=2101+111=313(313对应的十进制是55)

十进制Morton码计算

十进制的编码规则:首先,行列号转为二进制(从第0行0列开始);然后行列号交叉排列;最后将二进制结果转为十进制。十进制Morton编码是按左上,右上,左下,右下的顺序从0开始对每个格网进行自然编码的。

对于第5行(101)第7列(111),交叉排列得到110111,然后转为十进制就是55。和四进制的编码结果是一样的。

下面给出十进制Morton码的C++实现:

#include <iostream>

using std::cout;

int main() {
    uint32_t row = 5;
    uint32_t col = 7;
    uint64_t morton = 0;

    for (int i = 0; i < sizeof(row) * 8; i++) {
        morton |= (row & (uint64_t)1 << i) << i | (col & (uint64_t)1 << i) << (i + 1);
    }
    cout << morton << '\n';
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值