
深度学习基础
文章平均质量分 68
深度学习基础
thequitesunshine007
探索者
展开
-
YOLO V8的Anchor-Free、解耦头(Decoupled Head)、损失函数定义(含Varifocal Loss)
YOLOv8 的 设计摒弃了传统 YOLO 系列中依赖预定义锚框(Anchor Boxes)的机制,转而直接预测目标的中心点和边界框尺寸。这种设计简化了模型结构,降低了超参数调优的复杂度提升了检测速度和精度。以下是其核心实现原理和关键技术细节。原创 2025-04-13 22:23:45 · 1226 阅读 · 0 评论 -
YOLO V8中的“中心点邻近区域 + 动态IoU匹配“
它是联合优化正样本分配的策略,旨在更精准地匹配预测框与真实目标的位置关系。原创 2025-04-06 22:27:49 · 660 阅读 · 0 评论 -
Max Pooling和 Average Pooling的区别,使用场景分别是什么?
最大池化可以提取特征纹理, 最大池化提取边缘等“最重要”的特征平均池化可以保留背景信息,平均池化提取的特征更加smoothly当特征map中的信息都具有一定贡献的时候使用AvgPooling,例如图像分割中常用global avgpool来获取全局上下文关系,再比如网络走到比较深的地方,这个时候特征图的H W都比较小,包含的语义信息较多,这个时候再使用MaxPooling就不太合适了, 是因为网络深层的高级语义信息一般来说都能帮助分类器分类。转载 2023-01-29 16:17:48 · 1934 阅读 · 0 评论 -
常用激活函数的比较、激活函数非0中心导致的问题
(神经网络:激活函数非0中心导致的问题)原创 2023-01-05 11:25:23 · 214 阅读 · 0 评论 -
神经网络中常用的权重初始化方法及为何不能全初始化为0
在一个给定的区间[-r,r]内采用均匀分布来初始化参数。超参数r的设置可以按照神经元的连接数量进行自适应的调整。参数从一个固定均值(比如0)和固定方差(比如0.01)的高斯分布进行随机初始化。原创 2022-12-28 17:56:36 · 1928 阅读 · 0 评论 -
深入浅出Yolo系列之Yolov3&Yolov4&Yolov5&Yolox核心基础知识完整讲解
知乎江大白,墙裂推荐!原创 2022-12-22 11:21:02 · 240 阅读 · 0 评论 -
一文讲清楚FPN+PAN结构、SPP结构
FPN 高维度向低维度传递语义信息(大目标更明确)PAN 低维度向高维度再传递一次语义信息(小目标也更明确)深层的feature map携带有更强的语义特征,较弱的定位信息。而浅层的feature map携带有较强的位置信息,和较弱的语义特征。FPN就是把深层的语义特征传到浅层,从而增强多个尺度上的语义表达。而PAN则相反把浅层的定位信息传导到深层,增强多个尺度上的定位能力。转载 2022-12-20 15:42:47 · 12008 阅读 · 0 评论 -
什么是SPP网络
例如:最后一层特征图大小为6*6*10,(width,hight,channels),global average pooling就是将6*6大小的特征图平均采样为一个值,这样最后就输出1*10大小的特征向量,这种方式就只和通道数有关,而与特征图大小没有关系了。使用不同的size,stride,对全连接层前的卷积层进行不同池化大小的pooling,然后拼接,这样最终的输出一定是(p1*p1+p2*p2+…2)替换网络中的全连接层,对最后的卷积层使用global average pooling。原创 2022-12-20 14:53:22 · 2231 阅读 · 0 评论 -
如何防止过拟合(OverFitting)
声明!内容来源:如何防止过拟合。什么是过拟合为了得到一致假设而使假设变得过度复杂称为过拟合(overfitting),过拟合表现在训练好的模型在训练集上效果很好,但是在测试集上效果差。也就是说模型的泛化能力弱。在很多问题中,我们费心费力收集到的数据集并不能穷尽所有的状态,而且一般训练得到的模型被用来预测未知数据的结果,模型虽然在训练集上效果很好,但是在实际应用中效果差,就说明这个模型训练的并不是很成功,还需要改进。就譬如下方的图像中,左边黑色直线在一定程度拟合数据排列,而蓝紫色的曲线就是照顾到每一个原创 2021-11-02 11:02:08 · 536 阅读 · 0 评论 -
神经网络中pooling池化层如何参与反向传播?
池化层pooling操作常见的有平均池化mean pooling和最大池化max pooling,前者取某特征区域的平均值进行输出,而后者则取某特征区域的最大值进行输出,池化层的一般作用是对特征图进行下采样,它本身没有参数权重,计算也简单,但它可达到降维特征、突显特征、减少参数量、减少计算量、增加非线性、防止过拟合及提升模型泛化能力等作用,池化层的前向传播我们都比较好理解,但是其是如何参与反向传播的呢?本文就让我们一起来了解关于池化层的反向传播实现方法吧。池化层在反向传播时,它是不可导的,...转载 2021-09-16 17:02:49 · 1833 阅读 · 0 评论 -
深度学习基础知识---梯度弥散 梯度爆炸
防止过拟合:在网络的训练中,BN的使用使得一个minibatch中所有样本都被关联在了一起,因此网络不会从某一个训练样本中生成确定的结果,即同样一个样本的输出不再仅仅取决于样本的本身,也取决于跟这个样本同属一个batch的其他样本,而每次网络都是随机取batch,这样就会使得整个网络不会朝这一个方向使劲学习。1)没有它之前,需要小心的调整学习率和权重初始化,但是有了BN可以放心的使用大学习率,但是使用了BN,就不用小心的调参了,较大的学习率极大的提高了学习速度。但如果数据的分布一直在变,学习就很难了。原创 2022-12-19 16:12:10 · 3331 阅读 · 0 评论