一文讲清楚FPN+PAN结构、SPP结构

本文介绍了FPN(Feature Pyramid Network)和PAN(Path Aggregation Network)在目标检测中的作用。FPN通过高层语义特征传递增强多尺度表达,而PAN则将底层定位信息传递到高层,提升定位能力。此外,还讨论了SPP(Spatial Pyramid Pooling)结构,它解决了CNN对固定输入尺寸的需求,提升了模型对不同尺度输入的适应性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、FPN+PAN

 FPN 高维度向低维度传递语义信息(大目标更明确)
PAN 低维度向高维度再传递一次语义信息(小目标也更明确)

 

 

 

 

深层的feature map携带有更强的语义特征,较弱的定位信息。

而浅层的feature map携带有较强的位置信息,和较弱的语义特征。

FPN就是把深层的语义特征传到浅层,从而增强多个尺度上的语义表达。

PAN则相反把浅层的定位信息传导到深层,增强多个尺度上的定位能力

二、SPP

 在何恺明2015年《Spatial Pyramid Pooling in Deep ConvolutionalNetworks for Visual Recognition》被提出,改论文主要改进两点:

解决CNN需要固定输入图像的尺寸,导致不必要的精度损失的问题;

因为带有全连接层的网络结构都需要固定输入图像的尺度,当然后期也有直接用conv层代替FC层的,比如SSD网络直接用conv层来计算边界框坐标和置信度的。

具体的关于SPP,请参见什么是SPP网络_thequitesunshine007的博客-CSDN博客

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值