5、线性系统直接求解方法详解

线性系统直接求解方法详解

在解决线性系统问题时,直接方法是一类重要的手段,这类方法通常会在固定的步骤后得出系统的解,对于一个 $n×n$ 的矩阵,一般步骤数为 $n$。接下来,我们将详细探讨几种常见的直接方法。

1. 回代法(Back Substitution)
  • 最简单的线性系统求解 :对于形如 $Dx = b$ 的线性系统,其中 $D = diag(d_{11}, \cdots, d_{nn}) \in R^{n×n}$ 是一个对角矩阵,且对角元素非零,其解非常直观,即 $x_i = b_i / d_{ii}$,其中 $1 \leq i \leq n$。
  • 三角矩阵的线性系统求解 :当矩阵为三角矩阵时,问题会稍微复杂一些。以求解方程 $Rx = b$ 为例,其中 $R \in R^{n×n}$ 是一个上三角矩阵,形式如下:
    [
    R =
    \begin{pmatrix}
    r_{11} & r_{12} & r_{13} & \cdots & r_{1n} \
    0 & r_{22} & r_{23} & \cdots & r_{2n} \
    \vdots & \vdots & \vdots & \ddots & \vdots \
    0 & 0 & 0 & \cdots & r_{nn}
    \end{pmatrix}
    ]
    若 $R$ 的行列式不为零,则该系统有唯一解。由于 $R
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值