线性系统直接求解方法详解
在解决线性系统问题时,直接方法是一类重要的手段,这类方法通常会在固定的步骤后得出系统的解,对于一个 $n×n$ 的矩阵,一般步骤数为 $n$。接下来,我们将详细探讨几种常见的直接方法。
1. 回代法(Back Substitution)
- 最简单的线性系统求解 :对于形如 $Dx = b$ 的线性系统,其中 $D = diag(d_{11}, \cdots, d_{nn}) \in R^{n×n}$ 是一个对角矩阵,且对角元素非零,其解非常直观,即 $x_i = b_i / d_{ii}$,其中 $1 \leq i \leq n$。
- 三角矩阵的线性系统求解 :当矩阵为三角矩阵时,问题会稍微复杂一些。以求解方程 $Rx = b$ 为例,其中 $R \in R^{n×n}$ 是一个上三角矩阵,形式如下:
[
R =
\begin{pmatrix}
r_{11} & r_{12} & r_{13} & \cdots & r_{1n} \
0 & r_{22} & r_{23} & \cdots & r_{2n} \
\vdots & \vdots & \vdots & \ddots & \vdots \
0 & 0 & 0 & \cdots & r_{nn}
\end{pmatrix}
]
若 $R$ 的行列式不为零,则该系统有唯一解。由于 $R
订阅专栏 解锁全文
2万+

被折叠的 条评论
为什么被折叠?



