- 博客(174)
- 收藏
- 关注
原创 MCP服务创建指南
本文探讨了大规模表格分析中的技术挑战,介绍了MCP(Model Context Protocol)作为解决方案。文章对比了FunctionCall和MCP两种工具调用方式,指出MCP通过标准化协议解决了生态兼容性问题。详细阐述了MCP的基本架构、通信协议(STDIO/SSE/HTTP)和核心流程,并以VsCode+Cline配置table-reader服务为例,展示了MCP在分块处理大规模表格数据时的实际应用。最后指出MCP的局限性包括提示词设计要求和较高的Token消耗。
2025-12-13 19:13:33
565
原创 YOLOv10剪枝|稀疏训练、基于torch-pruning剪枝以及微调实践
详细介绍了YOLOv10模型的结构化剪枝方法,重点阐述了稀疏训练原理以及结构化剪枝的实现分析。
2025-12-13 19:13:28
1
原创 大模型微调快速入门
本文介绍了基于LLaMA-Factory框架的大模型微调全流程。首先对比了主流微调工具的特点,选定LLaMA-Factory作为开发框架。随后详细说明了环境搭建步骤,包括创建Python 3.10虚拟环境、源码安装及验证。在数据准备环节,重点阐述了数据集JSON文件的配置格式要求,包括dataset_info.json的结构和关联数据文件规范。最后简要介绍了通过图形化界面启动训练的过程,并提及训练过程中的损失曲线监控功能。全文为开发者提供了从框架选型到实际训练的全流程指导。
2025-11-01 17:37:36
502
原创 Langgraph研究
LangGraph是一个用于构建多步骤LLM工作流的开源框架,采用有向图(DAG)定义流程。核心概念包括节点(Node)、边(Edge)、状态(State)和图(Graph),支持可视化、可控制和有状态的流程编排。框架提供了add_node、add_edge等方法构建工作流,并支持条件分支。特别介绍了Agent的实现方式,通过"工具调用+模型循环"的ReAct范式执行任务,包含ToolNode、状态注入等关键组件。最后给出一个最小实现示例,展示如何通过条件边控制Agent循环执行工具调用。
2025-11-01 17:37:24
1168
原创 DINOv1/v2/v3简明理解
DINO是一种自监督视觉表征学习方法,通过教师-学生框架实现无标签学习。其核心机制包括:教师模型通过EMA(指数移动平均)从学生模型逐步演化,提供稳定目标;多视角一致性约束使模型学习高层语义;centering和sharpening技术防止特征坍塌。相比对比学习,DINO仅需正样本对,训练更简单。DINOv2进一步扩展了数据规模(1.42亿图像)和模型能力,引入Patch级目标等优化。DINOv3则致力于更大规模(170亿图像)和多任务通用性提升。
2025-10-20 14:38:19
1236
原创 Jetson上安装TensorRT
本文介绍了Jetson系统镜像安装CUDA、cuDNN、TensorRT等组件的详细步骤。主要内容包括:1)区分Jetson和Server版NVIDIA组件的差异;2)提供检测Jetson组件版本的脚本;3)详细说明从更新源到安装CUDA、cuDNN、TensorRT的完整流程,包括解决常见错误的方法;4)指导如何安装TensorRT工具trtexec。文章特别强调了JetPack版本组件与Ubuntu官方版本的区别,并提供了环境变量配置、错误排查等实用技巧,帮助用户正确安装和配置Jetson开发环境。
2025-10-20 14:34:09
446
原创 YOLOv8支持旋转框检测(OBB)任务随记
本文介绍了YOLOv8-OBB旋转框检测任务的快速上手指南。主要内容包括:1)数据集制作需将旋转框坐标转为分割任务格式并进行重采样;2)训练过程将预测角度转换为xywh格式计算IOU损失,并解释了数据增强和标签转换原理;3)详细分析了网络输出结构和损失函数计算方式;4)说明推理阶段直接输出中心点坐标、宽高和角度的后处理流程。文章还提供了官方文档参考链接,帮助读者快速实现旋转框检测任务。
2025-09-06 18:13:27
1169
原创 时序预测力作PatchMixer论文理解
本文提出PatchMixer模型,这是一种基于深度可分离卷积和补丁混合架构的时间序列预测方法。模型通过将时间序列划分为补丁进行处理,采用双头预测机制分别建模线性和非线性模式。训练流程包括数据准备、模型建立、损失定义、参数优化等步骤,关键超参数包括补丁大小、学习率、批量大小等。预测过程通过补丁划分、嵌入和深度可分离卷积处理实现。实验采用7:1:2的数据划分比例,输入序列长度为96时,模型可预测未来96个时间点。结果表明PatchMixer能有效捕捉时间序列特征,在预测任务中展现出优良性能。代码已在GitHub
2025-05-28 17:46:46
1182
原创 本地部署dify爬坑指南
本文介绍了Dify平台的本地部署流程及注意事项。主要内容包括:1)Docker Compose安装指南;2)解决Docker网络问题的详细步骤,包括镜像源配置和DNS设置;3)Dify本地部署命令;4)模型部署方法,建议在与Dify网络互通的环境中运行。文章提供了完整的操作流程和参考链接,帮助用户避免常见安装问题,实现Dify平台的顺利部署和使用。
2025-05-27 16:33:26
1130
原创 Sentence-BERT论文解析
标准的三段式:目前的方法弊端——这篇文章的提出——这篇文章方法的效果目前的方法弊端目前的方法:BERT(Devlin等人,2018)和RoBERTA(Liu et al,2019)在语义文本相似性(STS)等双对回归任务上设置了最先进的性能。弊端:然而,它需要将两个句子都输入到网络中,这导致了巨大的计算开销:在10000个句子的集合中找到最相似的一对需要大约5000万次推理计算(约65小时)BERT的构造使其不适合语义相似性搜索以及聚类等无监督任务。句子的输入导致巨大的计算开销。
2025-04-06 16:49:15
1054
1
原创 Bert论文解析
引入一种新的语言表示模型BERT,它源于Transformers的双向编码器表示。BEncoderRTBERT的原理简述——便捷性BERT旨在通过联合调节所有层中的左右上下文,从未标记文本中预训练深度双向表示。因此,只需一个额外的输出层即可对预训练的BERT模型进行微调,为各种任务(例如问答和语言推理)创建最先进的模型,而无需对特定任务的架构进行实质性修改。BERT的效果。
2025-04-06 16:47:36
1306
原创 Python的线程、进程与协程
进程:进程是操作系统分配资源的基本单位,每个进程都有独立的内存空间,包含代码、数据和系统资源。进程之间相互隔离,一个进程崩溃不会影响其他进程。线程:线程是进程内的执行单元,一个进程可以包含多个线程。线程共享进程的内存空间和资源,因此线程间的通信比进程间更高效,但也更容易出现数据竞争等问题。
2025-03-25 19:29:55
1368
原创 批归一化(Batch Normalization)与层归一化(Layer Normalization)的区别与联系
与 Batch Normalization(批归一化)的目标类似,都是为了加速训练并提高模型性能,但它们的归一化方式和应用场景有所不同。Layer Normalization 是对单个样本的所有特征进行归一化,而不是像 Batch Normalization 那样对整个 mini-batch 的每个特征进行归一化。Batch Normalization 还会对归一化后的数据进行缩放和平移,引入可学习的参数。Layer Normalization 还会对归一化后的数据进行缩放和平移,引入可学习的参数。
2025-03-25 19:27:11
1566
原创 三步教你在linux上本地部署DeepSeek-R1
云端API太贵?想保护自己的数据?没问题,三步教你本地部署DeepSeek,敢不敢挑战?以linux系统为例,windows也是同样的流程。
2025-02-23 11:36:49
3416
原创 多标签分类SOTA | ADDS论文解读
《Open Vocabulary Multi-Label Classification with Dual-Modal Decoder on Aligned Visual-Textual Features》论文要点笔记
2024-12-11 18:54:25
2535
异常检测模型快速训练窗口可视化插件
2024-04-06
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅