在大学期间,经常需要租借教室。大到院系举办活动,小到学习小组自习讨论,都需要
向学校申请借教室。教室的大小功能不同,借教室人的身份不同,借教室的手续也不一样。
面对海量租借教室的信息,我们自然希望编程解决这个问题。
我们需要处理接下来n天的借教室信息,其中第i天学校有ri个教室可供租借。共有m份
订单,每份订单用三个正整数描述,分别为dj, sj, tj,表示某租借者需要从第sj天到第tj天租
借教室(包括第sj天和第tj天),每天需要租借dj个教室。
我们假定,租借者对教室的大小、地点没有要求。即对于每份订单,我们只需要每天提
供dj个教室,而它们具体是哪些教室,每天是否是相同的教室则不用考虑。
借教室的原则是先到先得,也就是说我们要按照订单的先后顺序依次为每份订单分配教
室。如果在分配的过程中遇到一份订单无法完全满足,则需要停止教室的分配,通知当前申
请人修改订单。这里的无法满足指从第sj天到第tj天中有至少一天剩余的教室数量不足dj个。
现在我们需要知道,是否会有订单无法完全满足。如果有,需要通知哪一个申请人修改
订单。
第一行包含两个正整数n, m,表示天数和订单的数量。
提高组 day2
第二行包含n个正整数,其中第i个数为ri,表示第i天可用于租借的教室数量。
接下来有m行,每行包含三个正整数dj, sj, tj,表示租借的数量,租借开始、结束分别在
第几天。
每行相邻的两个数之间均用一个空格隔开。天数与订单均用从1开始的整数编号。
如果所有订单均可满足,则输出只有一行,包含一个整数 0。否则(订单无法完全满足)
输出两行,第一行输出一个负整数-1,第二行输出需要修改订单的申请人编号。
4 3
2 5 4 3
2 1 3
3 2 4
4 2 4
-1
2
【输入输出样例说明】
classroom.out
-1
2
第 1 份订单满足后,4 天剩余的教室数分别为 0,3,2,3。第 2 份订单要求第 2 天到
第 4 天每天提供 3 个教室,而第 3 天剩余的教室数为 2,因此无法满足。分配停止,通知第
2 个申请人修改订单。
【数据范围】
对于 10%的数据,有1 ≤ n, m ≤ 10;
对于 30%的数据,有1 ≤ n, m ≤ 1000;
对于 70%的数据,有1 ≤ n, m ≤ 105;
对于 100%的数据,有1 ≤ n, m ≤ 10^6, 0 ≤ ri, dj≤ 10^9, 1 ≤ sj≤ tj≤ n。
首先可以看出来这是一道线段树的应用。
对于数据大小,可以看出,要用lazy;
本题就是整体减一个值,看看数组里有没有值被减成了负数,这个可以用线段树维护最小值即可,看数组中的最小值是否为负数。
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
using namespace std;
const int maxn = 1000000+10;
int a[maxn];
int n,m,s,t,need;
struct node
{
int Min[maxn*4];
int dec[maxn*4];
void build(int a[],int l,int r,int p)
{
dec[p]=0;
if (l==r)
{
Min[p] = a[l];
return ;
}
int mid = (l+r) / 2;
build(a,l,mid,p+p);
build(a,mid+1,r,p+p+1);
Min[p] = min(Min[p+p],Min[p+p+1]);
}
void update(int p )
{
Min[p] = min(Min[p+p]-dec[p+p],Min[p]);
Min[p] = min(Min[p+p+1]-dec[p+p+1],Min[p]);
}
void push(int p)
{
dec[p+p]+=dec[p];
dec[p+p+1]+=dec[p];
dec[p]=0;
}
void getDec(int l ,int r,int p, int a,int b,int need)
{
if (l==a && r==b)
{
Min[p]-= (need+dec[p]);
if (l!=r) dec[p+p]+=dec[p]+need,dec[p+p+1]+=dec[p]+need;
dec[p]=0;
return ;
}
push(p);
int mid = (l+r) / 2;
if (b <= mid ) getDec(l,mid,p+p,a,b,need); else
if (a > mid ) getDec(mid+1,r,p+p+1,a,b,need); else
{
getDec(l, mid ,p+p,a,mid,need);
getDec(mid+1,r,p+p+1,mid+1,b,need);
}
update(p);
}
}tree;
int main()
{
cin >> n >> m ;
for (int i = 1; i <= n ;++i ) scanf("%d",&a[i]);
tree.build(a,1,n,1);
for (int i = 1; i <= m ;++i)
{
scanf("%d %d %d",&need, &s,&t);
tree.getDec(1,n,1,s,t,need);
if (tree.Min[1] < 0 )
{
printf("%d\n%d\n",-1,i);
return 0;
}
}
cout << 0 << endl;
return 0;
}