DeepSeek 作为一款卓越的国产 AI 模型,越来越多的公司考虑在自己的应用中集成。对于 Java 应用来说,我们可以借助 Spring AI 集成 DeepSeek,非常简单方便!
DeepSeek 介绍
DeepSeek 是国内顶尖 AI 团队「深度求索」开发的多模态大模型,具备数学推理、代码生成等深度能力,堪称"AI界的六边形战士"。DeepSeek 最新版本 R1 采用了“思维链”技术,能够展示完整的推理过程,使其在复杂推理任务上表现出色,甚至在某些方面可以与 OpenAI 的 O1 模型相媲美。
DeepSeek 身上的标签有很多,其中最具代表性的标签有以下两个:
- 低成本(不挑硬件、开源、使用简单无需复杂提示词)。
- 高性能(推理能力极强、回答准确)。
Spring AI 是什么?
Spring AI 从著名的 Python 项目(如 LangChain 和 LlamaIndex)中汲取灵感,解决了 AI 集成中的核心挑战:将企业数据和 API 与 AI 模型连接起来。
你可以将 Spring AI 看作是一个适配器或者高层封装,用来帮你更方便地集成和使用不同的 AI 模型。它的核心目标是简化开发流程,降低使用多种 AI 服务时的复杂性,同时提升代码的可维护性和灵活性。
Spring AI 的主要功能包括
统一 API:Spring AI 提供了一套统一的接口,用来调用不同的 AI 模型(例如 OpenAI、Hugging Face、DeepSeek、Gemini 等)。开发者只需要学习 Spring AI 的 API,就能无缝对接各种 AI 服务,而无需深入了解各家服务的底层实现和差异。
简化配置:Spring AI 提供了自动化的配置管理,例如 API 密钥、模型参数等。你只需要简单地在配置文件中定义所需的参数,Spring AI 就会自动完成初始化和连接,避免繁琐的手动配置。
易于切换:Spring AI 的抽象设计使得更换 AI 提供商变得非常简单。开发者只需要修改少量配置,而不用修改业务代码,从而实现灵活的 AI 服务切换,适应不同场景需求。
1、环境准备
在开始集成之前,确保你的开发环境满足以下要求:
- JDK17 或更高版本
- 高版本才能使用SpringAI,才能调用deepseek;
- DeepSeekAPIKey(可通过官网注册获取),申请地址:https://platform.deepseek.com/usage
使用Spring Initializr 或其他工具创建-一个新的SpringBoot项目,确保版本为3.2.x或更高。
2、构建项目
2.1、pom依赖
在项目的pom.xml文件中添加SpringAI和DeepSeek的相关依赖。
以下是基于Maven的依赖配置示例:
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>3.4.2</version>
<relativePath/> <!-- lookup parent from repository -->
</parent>
<groupId>com.tyron</groupId>
<artifactId>Spring-AI</artifactId>
<version>0.0.1-SNAPSHOT</version>
<name>Spring-AI</name>
<description>Spring-AI</description>
<url/>
<properties>
<java.version>21</java.version>
<spring-ai.version>1.0.0-M5</spring-ai.version>
</properties>
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-openai-spring-boot-starter</artifactId>
</dependency>
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<optional>true</optional>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
</dependencies>
<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-bom</artifactId>
<version>${spring-ai.version}</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>
<annotationProcessorPaths>
<path>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
</path>
</annotationProcessorPaths>
</configuration>
</plugin>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
<configuration>
<excludes>
<exclude>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
</exclude>
</excludes>
</configuration>
</plugin>
</plugins>
</build>
</project>
2.2、配置文件
#必填项
spring.ai.openai.api-key=your-api-key
spring.ai.openai.base-url=https://api.deepseek.com
#模型选择(示例使用对话模型)
spring.ai.openai.chat.options.model=deepseek-chat
2.3、接口定义
@RestController()
@RequestMapping("/ai")
public class ChatController {
private OpenAiChatModel openAiChatModel;
@Autowired
public ChatController(OpenAiChatModel openAiChatModel) {
this.openAiChatModel = openAiChatModel;
}
/**
* 生成
*
* @param message 输入信息
* @return 输出信息
*/
@GetMapping("/generate")
public Map generate(@RequestParam(value = "message", defaultValue = "你是谁?") String message) {
return Map.of("generation", this.openAiChatModel.call(message));
}
}
3、方法调用
接口报错
充值后,方可调用
小天有话说
本文中使用 spring-ai-openai starter
,只要在请求头里加个api_key
,就能假装自己在调 OpenAI。Spring AI 的 openai starter 本质上是通过 RestTemplate 发请求,访问 DeepSeek API。
除此之外还可以通过本地化部署的方式进行调用,Spring Cloud Alibaba AI 中也支持这种方式,并且官网上提供了详细的方法:https://java2ai.com/blog/spring-ai-alibaba-ollama-deepseek/ 。
大模型的响应速度是很慢的,为了提升用户体验,流式输出便很有必要了,后续文章会进行样例说明。
题外话
在 2025 年,AI 已深度融入社会各领域,成为推动发展的关键力量。
技术层面,AI 模型市场呈现多元竞争格局,通过多模态融合和轻量化部署实现效率跃升。DeepSeek等国产模型通过架构创新将训练成本降低,推动AI应用从“工具辅助”向“数字劳动力”转型。
在应用领域,AI 的硬件应用不断拓展,特别是在机器人技术方面,像自动驾驶汽车,以及自主无人机、仓库和制造业机器人等。此外,智能语音助手变得更加智能,能处理复杂查询,根据用户习惯动态管理日程并做出前瞻性建议。
展望未来,AI 将朝着多模态、更个性化、更智能的方向发展。多模态 AI 将整合文本、图像、音频和视频等多源数据,实现更自然的人机交互和更深入的理解。在生成式 AI 方面,除了图像和视频生成,还将拓展到更多创意领域,如音乐创作、文学创作等,成为创作者不可或缺的工具。
对程序员群体呈现“双刃剑”效应:一方面,AI工具通过代码生成、智能调试和个性化学习显著提升效率,例如Cursor、DeepSeek等工具能辅助快速开发项目,甚至帮助新手理解复杂代码;另一方面,初级程序员面临重复性任务被AI替代的压力,需向全栈开发或AI系统设计等深度领域转型。同时,AI推动工作方式革新,程序员角色从编码执行者转向任务规划者,通过多模态大模型实现跨语言协作和智能决策,成为人机协同的“技术赋能者”。整体而言,AI既是生产力跃升的催化剂,也是职业能力重构的驱动力,要求程序员在驾驭技术的同时强化创新思维与跨领域整合能力。