
ELK
文章平均质量分 90
ES,kibana,logstatsh,cerebro
懒鸟一枚
算是总结、沉淀吧……
展开
-
ES集群原理
转自https://www.cnblogs.com/shenlei-blog/p/13367269.html一、ES集群原理 查看集群健康状况:URL+ /GET _cat/health代表一个集群,集群中有多个节点,其中有一个为主节点,这个主节点是可以通过选举产生的,主从节点是对于集群内部来说的。es的一个概念就是去中心化,字面上理解就是无中心节点,这是对于集群外部来说的,因为从外部来看es集群,在逻辑上是个整体,你与任何一个节点的通信和与整个es集群通信是等价的。在单台ES服务器节点上,随着业务量原创 2025-03-06 17:35:06 · 663 阅读 · 0 评论 -
ElasticHD 的安装配置使用
使用ElasticHD搜索ES集群内的实时数据,比如日志分析、性能指标监控。ES实时数据搜索使用ElasticHD搜索ES集群内的实时数据,比如日志分析、性能指标监控。数据可视化Dashboard创建定制化的Dashboard,展示内存、CPU、磁盘利用率等关键指标。索引管理方便地管理ES集群中的各类索引,如新建、删除、映射修改。SQL到DSL转换利用SQL语句查询ES数据,自动转换成Elasticsearch查询DSL。典型生态项目。原创 2024-08-10 16:01:11 · 1262 阅读 · 0 评论 -
Mysql和ES使用汇总
一般使用时使用ES 中存储全文检索的关键字与获取的商品详情的id,通过ES查询获取查询商品的列表中展示的数据,通过展示id 操作去获取展示商品的所有信息。mysql根据id去查询数据库数据是很快的;为什么ES一般不存储所有表的数据?因为数据表的所有字段列并不一定参与业务查询,如果将业务表中超多列的字段全部存储在ES中反而影响ES的查询性能。在实际使用中ES中一般存储,全文检索列或者列表展示列字段和id。通过id去数据库hash散列分库分表查询大数据列是比较快的;通过点击商品详情获取商品详情id,通过点原创 2024-07-02 16:51:32 · 1641 阅读 · 0 评论 -
SpringBoot+ELK 收集日志的两种方式
也就是FileBeat 通过读取日志文件位置获取日志内容,然后发送至logstash,logstash收到日志后再发送至ES,这种方式。原创 2024-07-02 00:09:27 · 1656 阅读 · 0 评论 -
FileBeat详解
beats是一个代理,将不同类型的数据发送到elasticsearch。beats可以直接将数据发送到elasticsearch,也可以通过logstash将数据发送elasticsearch。beats有三个典型的例子:Filebeat、Topbeat、Packetbeat。Filebeat用来收集日志,Topbeat用来收集系统基础设置数据如cpu、内存、每个进程的统计信息,Packetbeat是一个网络包分析工具,统计收集网络信息。这三个是官方提供的。后续会慢慢介绍这三个beat。原创 2024-06-30 19:44:35 · 4036 阅读 · 0 评论 -
ELK企业级实战
https://www.bilibili.com/video/BV1x94y1674x/?buvid=XY705117E90F73A790429C9CFBD5F70F22168&vd_source=939ea718db29535a3847d861e5fe37ef原创 2024-06-27 16:56:37 · 368 阅读 · 0 评论 -
ES 分词器
顾名思义,文本分析就是把全文本转换成一系列单词(term/token)的过程,也叫分词。在 ES 中,Analysis是通过分词器(Analyzer) 来实现的,可使用 ES 内置的分析器或者按需定制化分析器。举一个分词简单的例子:比如你输入 Mastering Elasticsearch,会自动帮你分成两个单词,一个是 mastering,另一个是 elasticsearch,可以看出单词也被转化成了小写的。原创 2024-01-28 14:30:20 · 2459 阅读 · 0 评论 -
ES -倒排索引
倒排表以字或词为关键字进行索引,表中关键字所对应的记录表项记录了出现这个字或词的所有文档,一个表项就是一个字表段,它记录该文档的ID和字符在该文档中出现的位置情况。单词-文档矩阵是表达两者之间所具有的一种包含关系的概念模型,图1展示了其含义。下图的每列代表一个文档,每行代表一个单词,打对勾的位置代表包含关系。从纵向即文档这个维度来看,每列代表文档包含了哪些单词,比如文档1包含了词汇1和词汇4,而不包含其它单词。从横向即单词这个维度来看,每行代表了哪些文档包含了某个单词。原创 2024-01-28 13:33:00 · 3272 阅读 · 0 评论 -
ES API 批量操作 Bulk API
bulk 对 JSON串 有着严格的要求。每个JSON串 不能换行 ,只能放在同一行,同时, 相邻的JSON串之间必须要有换行 (Linux下是\n;一般建议是1000-5000个文档,大小建议是5-15M,默认不能超过100M,可以在es的配置文件(即$ES_HOME下的config下的elasticsearch.yml)中。Bulk会把将要处理的数据载入内存中,所以数据量是有限制的,最佳的数据量不是一个确定的数值,它取决于你的硬件,你的文档大小以及复杂性,你的索引以及搜索的负载。原创 2024-01-14 22:18:38 · 1068 阅读 · 0 评论 -
ES 原理和使用场景
(1)数据量较大,es的分布式本质,可以帮助你快速进行扩容,承载大量数据(2)数据结构灵活多变,随时可能会变化,而且数据结构之间的关系,非常复杂,如果我们用传统数据库,那是不是很坑,因为要面临大量的表(3)对数据的相关操作,较为简单,比如就是一些简单的增删改查,用我们之前讲解的那些document操作就可以搞定(4)NoSQL数据库,适用的也是类似于上面的这种场景。原创 2024-01-14 20:55:37 · 2192 阅读 · 0 评论 -
ES 之索引和文档
本文主要介绍ES中的数据组成结构单元。原创 2024-01-14 12:16:19 · 2893 阅读 · 0 评论 -
Logstash 数据采集框架详解
文件描述配置Logstash的yml。包含在单个Logstash实例中运行多个管道的框架和说明。配置Logstash的JVM,使用此文件设置总堆空间的初始值和最大值,此文件中的所有其他设置都被视为专家设置。包含log4j 2库的默认设置。原创 2024-01-13 12:15:09 · 1942 阅读 · 0 评论 -
KIBANA可视化管理界面说明
更说明转自https://blog.csdn.net/IT_ZRS/article/details/1254965881 主要结构功能使用浏览器访问 ip:5601 默认端口,进入首页Discover:日志管理视图 主要进行搜索和查询Visualize:统计视图 构建可视化的图表Dashboard:仪表视图 将构建的图表组合形成图表盘Timelion:时间轴视图 随着时间流逝的数据APM:性能管理视图 应用程序的性能管理系统Canvas:大屏展示原创 2024-01-13 11:20:36 · 5578 阅读 · 0 评论 -
ElasticSearch 管理界面以及常用的命令
进入kibana,点击Dev Tools,此处可以编写es的查询语句;点击Management可以进入index的管理界面。原创 2023-03-29 11:13:28 · 4469 阅读 · 0 评论 -
ES-极客学习第二部分ES 入门
需要通过Kibana导入Sample Data的电商数据。具体参考“2.2节-Kibana的安装与界面快速浏览”原创 2024-01-09 00:42:15 · 609 阅读 · 0 评论 -
ELK之Elasticsearch常用DSL语句(kibana语句)
注:filter可以放到bool条件下面,同样bool条件也可以放在filter下面。转载 2024-01-10 23:47:18 · 656 阅读 · 0 评论 -
docker 安装elasticsearch、kibana、cerebro、logstash
firewalld 启动或者重启的时候,将会从 iptables 中移除 docker的规则,从而影响了 Docker 的正常工作。当你使用的是 systemd 的时候, firewalld 会在 Docker 之前启动,但是如果你在 Docker 启动之后再启动。我这里是将原本的elasticsearch改成了docker内部的IP,查看docker内部的IP命令如下。如果上面的配置都没有问题的话,可能是因为防火墙的问题,我们需要把防火墙关掉(我就是这么解决的)这样就是显示,就表明防火墙已经关闭。原创 2024-01-07 11:24:38 · 1571 阅读 · 0 评论 -
ES -极客学习
起源 LuceneElasticsearch 的诞生。原创 2024-01-06 22:18:45 · 608 阅读 · 0 评论