友情链接:
- 【数据处理效率提升实践】ArgoDB如何助力企业全面实现数据处理效率最大化?
- 【最新案例】ArgoDB新功能之读写分离,助力某医药集团打造高效数据中心,消除传统方案的灵活性限制,确保响应时间的可预测性
- 【指标查询调优实践案例】ArgoDB助力某银行实现性能全面提升
前言
随着市场快速变化,大数据平台也面临着诸多挑战和变革。对于依赖CDH构建大数据平台的企业来说当前正在面临以下多重挑战:
- 技术升级:CDH过往版本在大数据生态服务支持上相对有限,用户在应对新需求和数据处理场景变化时,需要自行扩展技术生态,这将涉及到技术复杂性、兼容性问题以及后续维护挑战,增加了额外的时间和人力投入;
- 数据安全与挑战:随着CDH停止更新,其管理面的漏洞和各大数据组件的漏洞修复可能得不到Cloudera官方支持,导致未修复漏洞、遗留代码风险、合规性问题、依赖关系问题以及供应链攻击等安全风险大幅增加;
- 系统维护挑战:CDH免费版官方支持的结束意味着企业需要自行维护系统,管理面的漏洞和大数据组件的漏洞修复将无法得到官方支持,导致安全风险大幅增加,增加了运维压力。对于企业来说需要自行应对这些挑战,比如招聘具备大数据维护能力的专业工程师或与第三方服务提供商合作,以便于后续的运维管理;
- 合规性:在“十四五”规划中,国家对企业数字化转型升级提出了明确的政策要求,鼓励国内企业积极采用国产技术和产品。然而,CDH大数据技术和生态系统在兼容国产软硬件方面难以满足合规性要求;
- 本地化服务与稳定性挑战:随着大数据技术在企业中的应用不断深化,对平台服务的连续性和稳定性保障需求日益凸显。本地化服务供应商能更好地理解企业需求和业务流程,提供定制化解决方案。然而,CDH在本地化服务方面的不足,不利于企业大数据平台的长期稳定运营;
- ....
综上,CDH国产化替代已迫在眉睫,不仅关乎技术升级和数据安全,也涉及合规性和本地化服务的稳定性。企业需要积极寻求新的技术平台和合作伙伴,以确保在数字经济时代保持竞争力和业务连续性。
项目背景
为了应对数据量的日益增长,在早期,该企业构建了一个基于MPP技术架构的数据仓库。但是在企业日常生产运行过程中,伴随着业务的持续发展以及金融科技基础能力的不断提升,各个信息系统数据量日渐增长,数据应用场景更加复杂化,对于数据的实效性实时性要求更高。
原有的数据仓库架构对于实时场景与多模数据湖场景支持较差,并且应金融科技规划的重要举措,急需构建一个全行级的数据中台服务体系来满足数据应用、数据服