目标检测--LatentSVM和(Deformable Part Model,DPM)

本文介绍了Felzenszwalb提出的将LatentSVM与Deformable Part Model结合用于目标检测的方法,详细讨论了Hog特征、Deformable Part Model和Latent SVM在目标检测中的应用。通过Hog特征模板匹配和Deformable Part Model衡量窗口得分,使用Latent SVM将学习问题转化为分类问题。文中提到了几个关键论文,并提供了代码实现资源,包括旧版和新版代码,以及Windows下的调试步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、综述

Deformable Part Model和LatentSVM结合用于目标检测由大牛P.Felzenszwalb提出,代表作是以下3篇paper:

[1] P. Felzenszwalb, D. McAllester, D.Ramaman. A Discriminatively Trained, Multiscale, Deformable Part Model. Proceedingsof the IEEE CVPR 2008.pdf 中文译文

[2] P. Felzenszwalb, R. Girshick, D.McAllester, D. Ramanan. Object Detection with Discriminatively Trained PartBased Models. IEEE Transactions on Pattern Analysis and Machine Intelligence,Vol. 32, No. 9, September 2010.pdf 中文译文

[3] P. Felzenszwalb, R. Girshick, D.McAllester. Cascade Object Detection with Deformable Part Models. Proceedingsof the IEEE CVPR 2010. pdf


其中[2]阐述了如何利用DPM来做检测(特征处理+分类阶段),[3]阐述了如何利用cascade思想来加速检测。综合来说,作者的思想是Hog Features+Deformable Part Model+Latent SVM的结合:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值