注:本文续于《强化学习之DDQN》
Dueling DQN的思想是把神经网络中Q价值的输出分成两部分,第一部分是状态价值V,这部分价值由状态直接决定和Action无关。第二部分就是动作价值和状态价值的差值A,每一个Action都存在一个差值。这两部分构成了倒数第二层的神经网络,节点数为Action数+1。然后最后一层的Q值就可以直接由V和A相加构成。
Q
=
V
+
A
Q = V + A
Q=V+A
Dueling DQN和DDQN唯一不同的地方是网络结构,因此修改程序时只需要修改Network类即可。这种计算结构使得学习性能得到提高。优点在于与DQN相比,无论动作a如何,都可以逐步学习与V(s)相关的网络连接参数,因此学习的轮数比DQN更少,随着动作选择的增加,优势更加明显。
class Network(torch.nn.Module):
def __init__(self,n_in,n_mid,n_out):
super(Network,self).__init__()
self.fc1 = torch.nn.Linear(n_in,n_mid)
self.fc2 = torch.nn.Linear(n_mid,n_mid)
self.fc3_adv = torch.nn.Linear(n_mid,n_out)
self.fc3_v = torch.nn.Linear(n_mid,1)
def forward(self,x):
h1 = F.relu(self.fc1(x))
h2 = F.relu(self.fc2(h1))
adv = self.fc3_adv(h2)
# expand函数作用是采用复制的方式扩展一个维度的长度,-1指不改变长度,这里把V复制成和A数量一样多
val = self.fc3_v(h2).expand(-1,adv.size(1))
# V + A ,然后都减去A的平均值
output = val + adv - adv.mean(1,keepdim = True).expand(-1.adv.size(1))
return output
在实际操作中,我们通常需要减去一个平均值:
采用这种方法,虽然使得值函数V和优势函数A不再完美的表示值函数和优势函数(在语义上的表示),但是这种操作提高了稳定性。而且,并没有改变值函数V和优势函数A的本质表示。如果只是简单相加,由于动作类型的不同,具有不同的偏置量,可能无法得到很好的学习,通过在一个节点内的输出加入另一个节点的信息,可以让神经网络在误差传递的过程中得到更加充分的学习。