计算机视觉
文章平均质量分 91
tianwaifeimao
Only god can judge me
展开
-
单图像去雾
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档全文摘抄自博主@hyfine_与@just_sort博客,原文地址如下:https://blog.csdn.net/f290131665/article/details/96404768https://blog.csdn.net/f290131665/article/details/96404768本文仅用作个人学习,转载请移步原文作者处。文章目录前言 一、pandas是什么? 二、使用步骤 1.引入库 2.读入转载 2021-08-06 14:07:48 · 418 阅读 · 0 评论 -
基于OpenCV的Gamma校正原理与实现
声明:本文原文出自@零钱币的博文,原文地址为:https://blog.csdn.net/linqianbi/article/details/78617615。本文全文摘抄以及少量修订仅为本人学习、记录所用,若博主有异议请联系本人删除。gamma校正原理: 假设图像中有一个像素,值是 200 ,那么对这个像素进行校正必须执行如下步骤: 1. 归一化 :将像素值转换为 0 ~ 1 之间的实数。 算法如下 : ( i + 0. 5)/256 这里包含 1 个除法和 1 个加法操作。对于...转载 2020-10-19 17:50:05 · 4467 阅读 · 2 评论 -
卷积神经网络
本文仅用于个人学习,转载请注明原作者@张雨石及出处:http://blog.csdn.net/stdcoutzyx/article/details/41596663自今年七月份以来,一直在实验室负责卷积神经网络(Convolutional Neural Network,CNN),期间配置和使用过theano和cuda-convnet、cuda-convnet2。为了增进CNN的理解和使转载 2017-04-07 17:20:06 · 707 阅读 · 0 评论 -
机器学习的一些通俗易懂的tutorial
原文转载自:http://blog.csdn.net/tkingreturn/article/details/19325919Prior, Likelihood, PosteriorMLAPP第3.2节,讲的很好,用了一个叫 number game 的小游戏做例子,通俗易懂距离和相似度度量距离和相似度度量 » webdataanalysis.net转载 2016-09-27 22:05:12 · 673 阅读 · 0 评论 -
马尔科夫随机场(MRF)
原文转载自@萝卜羊的文章,仅供个人学习参考使用,原文地址:http://blog.csdn.net/polly_yang/article/details/9716591 之前自己做实验也用过MRF(Markov Random Filed,马尔科夫随机场),基本原理理解,但是很多细节的地方都不求甚解。恰好趁学习PGM的时间,整理一下在机器视觉与图像分析领域的MRF的相关知识。转载 2016-09-20 22:24:36 · 2137 阅读 · 0 评论 -
基于Local Search的直线匹配算法
----------------------------------------------------参考文献--------------------------------------------翻译 2014-04-28 12:07:23 · 6759 阅读 · 3 评论 -
基于LSD的直线提取算法
Validation Step:The validation step is based on the a contrario approachand the Helmholtz principle proposed by Desolneux.the Helmholtz principle:在完美噪声图像图像中不应该检测到目标。 contrario approach:一翻译 2013-12-30 14:54:09 · 60483 阅读 · 8 评论 -
极线约束(epipolar constraint)
三维空间中一点p,投影到两个不同的平面I1、I2,投影点分别为p1,p2。p、p1、p2在三维空间内构成一个平面S。S与面I1的交线L1过p1点,称之为相对于p2的极线。同理S与I2的交线称之为相对于p1的极线。如图:所谓极线约束就是说同一个点在两幅图像上的映射,已知左图映射点p1,那么右图映射点p2一定在相对于p1的极线上,这样可以减少原创 2014-02-20 11:13:25 · 46219 阅读 · 7 评论 -
基于边缘的模板匹配
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% a: model RGB image %% b: target RGB image %% c: output the match image %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%fun原创 2013-12-23 09:30:25 · 9716 阅读 · 4 评论 -
三维透视变换
From:维基百科。透视投影的定义可以理解为透过摄像机取景器对于被投影物体进行观察。摄像机的位置、朝向和视野都将影响投影变换的结果。我们定义以下变量来对这一变换进行描述::将被投影的三维空间中的点。:摄像机的位置。:摄像机的旋转角度。(也可以理解为物体的旋转角度,但是方向相反)当 =且 =, 三维向量将被投影到二维向量。:观测者相对显示平面的位置。最终结果为:转载 2013-11-01 16:18:12 · 3472 阅读 · 0 评论