最近看到一个tendorflow的视频,其中提到了超参数的搜索,通过超参数的选择实现快速地搭建自己的优秀的神经网络模型。
手动实现神经网路的参数
learning_rates = [1e-4, 3e-4, 1e-3, 3e-3, 1e-2, 3e-2]
histories = []
for lr in learning_rates:
model = keras.models.Sequential([
keras.layers.Dense(30, activation='relu',
input_shape=x_train.shape[1:]),
keras.layers.Dense(1),
])
optimizer = keras.optimizers.SGD(lr)
model.compile(loss="mean_squared_error", optimizer=optimizer)
callbacks = [keras.callbacks.EarlyStopping(
patience=5, min_delta=1e-2)]
history = model.fit(x_train_scaled, y_train,
validation_data = (x_valid_scaled, y_valid),
epochs = 100,
callbacks = callbacks)
histories.append(history)
通过sklearn实现超参数搜索
**1.**将kears封装成能够识别的形式
def build_model(hidden_layers = 1,
layer_size = 30,
learning_rate = 3e-3):
model = keras.models.Sequential()
model.add(keras.layers.Dense(layer_size, activation='relu',
input_shape=x_train.shape[1:]))
for _ in range(hidden_layers - 1):
model.add(keras.layers.Dense(layer_size,
activation = 'relu'))
model.add(keras.layers.Dense(1))
optimizer = keras.optimizers.SGD(learning_rate)
model.compile(loss = 'mse', optimizer = optimizer)
return model
#此包在kears.wrappers.scikit_learn
sklearn_model = KerasRegressor(
build_fn = build_model)
callbacks = [keras.callbacks.EarlyStopping(patience=5, min_delta=1e-2)]
history = sklearn_model.fit(x_train_scaled, y_train,
epochs = 10,
validation_data = (x_valid_scaled, y_valid),
callbacks = callbacks)
**2.**生成参数集合
from scipy.stats import reciprocal
# f(x) = 1/(x*log(b/a)) a <= x <= b
param_distribution = {
"hidden_layers":[1, 2, 3, 4],
"layer_size": np.arange(1, 100),
"learning_rate": reciprocal(1e-4, 1e-2),
}
**3.**开始运算
from sklearn.model_selection import RandomizedSearchCV
random_search_cv = RandomizedSearchCV(sklearn_model,
param_distribution,
#多少参数集合
n_iter = 10,
cv = 3,
#多少任务一起处理
n_jobs = 1)
random_search_cv.fit(x_train_scaled, y_train, epochs = 100,
validation_data = (x_valid_scaled, y_valid),
callbacks = callbacks)
**4.**获得最好的参数结果
print(random_search_cv.best_params_)
print(random_search_cv.best_score_)
print(random_search_cv.best_estimator_)
model = random_search_cv.best_estimator_.model