贝塔函数与伽马函数的关系

【定理8.20】

如果x>0x > 0x>0,又y>0y > 0y>0,那么

∫01tx−1(1−t)y−1dt=Γ(x)Γ(y)Γ(x+y)\int_{0}^{1}{t^{x - 1}(1 - t)^{y - 1}dt} = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x + y)}01tx1(1t)y1dt=Γ(x+y)Γ(x)Γ(y)

这个积分是所谓的BBB函数B(x,y)B(x,y)B(x,y)

【证明】

首先B(x+1,y)B(x + 1,y)B(x+1,y)对应的定积分是存在的,这是因为

B(x+1,y)=∫01tx(1−t)y−1dtB(x + 1,y) = \int_{0}^{1}{t^{x}(1 - t)^{y - 1}dt}B(x+1,y)=01tx(1t)y1dt

其中

tx<1t^{x} < 1tx<1

B(x+1,y)<∫01(1−t)y−1dtB(x + 1,y) < \int_{0}^{1}{(1 - t)^{y - 1}dt}B(x+1,y)<01(1t)y1dt

而瑕积分

∫01(1−t)y−1dt=−(1−t)yy ∣01=1y\int_{0}^{1}{(1 - t)^{y - 1}dt} = - \frac{(1 - t)^{y}}{y}\left. \ \right|_{0}^{1} = \frac{1}{y}01(1t)y1dt=y(1t)y 01=y1

同理B(x,y+1)B(x,y + 1)B(x,y+1)对应的定积分是存在的。

由于

B(x,y)=∫01tx−1(1−t)y−1dt=∫01tx−1(1−t)y−1(t+1−t)dt=∫01tx(1−t)y−1dt+∫01tx−1(1−t)ydt=B(x+1,y)+B(x,y+1){B(x,y) }{= \int_{0}^{1}{t^{x - 1}(1 - t)^{y - 1}dt} }{= \int_{0}^{1}{t^{x-1}(1 - t)^{y - 1}(t + 1 - t)dt} }{= \int_{0}^{1}{t^{x}(1 - t)^{y - 1}dt} + \int_{0}^{1}{t^{x - 1}(1 - t)^{y}dt} }{= B(x + 1,y) + B(x,y + 1)}B(x,y)=01tx1(1t)y1dt=01tx1(1t)y1(t+1t)dt=01tx(1t)y1dt+01tx1(1t)ydt=B(x+1,y)+B(x,y+1)

所以定积分

∫01tx−1(1−t)y−1dt\int_{0}^{1}{t^{x - 1}(1 - t)^{y - 1}dt}01tx1(1t)y1dt

存在。

又根据分部积分可知

B(x+1,y)=∫01tx(1−t)y−1dt=−tx(1−t)yy ∣01+xy∫01tx−1(1−t)ydt=xyB(x,y+1){B(x + 1,y) }{= \int_{0}^{1}{t^{x}(1 - t)^{y - 1}dt} }{= - \frac{t^{x}(1 - t)^{y}}{y}\left. \ \right|_{0}^{1} + \frac{x}{y}\int_{0}^{1}{t^{x - 1}(1 - t)^{y}dt} }{= \frac{x}{y}B(x,y + 1)}B(x+1,y)=01tx(1t)y1dt=ytx(1t)y 01+yx01tx1(1t)ydt=yxB(x,y+1)

所以

B(x+1,y)=xx+yB(x,y)B(x + 1,y) = \frac{x}{x + y}B(x,y)B(x+1,y)=x+yxB(x,y)

B(x,y+1)=yx+yB(x,y)B(x,y + 1) = \frac{y}{x + y}B(x,y)B(x,y+1)=x+yyB(x,y)

根据递推关系可知

B(x+n,y)=x…(x+n−1)(x+y)(x+y+1)…(x+y+n−1)B(x,y)B(x + n,y) = \frac{x\ldots(x + n - 1)}{(x + y)(x + y + 1)\ldots(x + y + n - 1)}B(x,y)B(x+n,y)=(x+y)(x+y+1)(x+y+n1)x(x+n1)B(x,y)

B(1,1)=1B(1,1) = 1B(1,1)=1

所以当xxx为整数时定理成立,此时

B(1,y)=1yB(1,y) = \frac{1}{y}B(1,y)=y1

B(n,y)=(n−1)!y(y+1)…(y+n−1)B(n,y) = \frac{(n - 1)!}{y(y + 1)\ldots(y + n - 1)}B(n,y)=y(y+1)(y+n1)(n1)!

下面仅需证明0<x<10 < x < 10<x<1时定理成立即可

固定yyy不变,根据Horlder赫尔德不等式,可知logB(x,y){log}{B(x,y)}logB(x,y)是关于xxx的凸函数。所以

log⁡B(n+1,y)−logB(n,y)≤log⁡B(x+n+1,y)−logB(n+1,y)x≤log⁡B(n+2,y)−logB(n+1,y)\log{B(n + 1,y)} - {log}{B(n,y)} \leq \frac{\log{B(x + n + 1,y)} - {log}{B(n + 1,y)}}{x} \leq \log{B(n + 2,y)} - {log}{B(n + 1,y)}logB(n+1,y)logB(n,y)xlogB(x+n+1,y)logB(n+1,y)logB(n+2,y)logB(n+1,y)

整理得

lognn+y≤log⁡B(x+n+1,y)−logB(n+1,y)x≤logn+1n+1+y{log}\frac{n}{n + y} \leq \frac{\log{B(x + n + 1,y)} - {log}{B(n + 1,y)}}{x} \leq {log}\frac{n + 1}{n + 1 + y}logn+ynxlogB(x+n+1,y)logB(n+1,y)logn+1+yn+1

继续整理得

B(n+1,y)×(nn+y)x≤B(x+n+1,y)≤B(n+1,y)×(n+1n+1+y)xB(n + 1,y) \times \left( \frac{n}{n + y} \right)^{x} \leq B(x + n + 1,y) \leq B(n + 1,y) \times \left( \frac{n + 1}{n + 1 + y} \right)^{x}B(n+1,y)×(n+yn)xB(x+n+1,y)B(n+1,y)×(n+1+yn+1)x

所以

n!y(y+1)…(y+n)×(x+y)(x+y+1)…(x+y+n)x(x+1)…(x+n)×(nn+y)x≤B(x,y)≤n!y(y+1)…(y+n)×(x+y)(x+y+1)…(x+y+n)x(x+1)…(x+n)×(n+1n+1+y)x\frac{n!}{y(y + 1)\ldots(y + n)} \times \frac{(x + y)(x + y + 1)\ldots(x + y + n)}{x(x + 1)\ldots(x + n)} \times \left( \frac{n}{n + y} \right)^{x} \leq B(x,y) \leq \frac{n!}{y(y + 1)\ldots(y + n)} \times \frac{(x + y)(x + y + 1)\ldots(x + y + n)}{x(x + 1)\ldots(x + n)} \times \left( \frac{n + 1}{n + 1 + y} \right)^{x}y(y+1)(y+n)n!×x(x+1)(x+n)(x+y)(x+y+1)(x+y+n)×(n+yn)xB(x,y)y(y+1)(y+n)n!×x(x+1)(x+n)(x+y)(x+y+1)(x+y+n)×(n+1+yn+1)x

根据

Γ(x)=lim⁡n→∞n!nxx(x+1)…(x+n)\Gamma(x) = \lim_{n \rightarrow \infty}\frac{n!n^{x}}{x(x + 1)\ldots(x + n)}Γ(x)=nlimx(x+1)(x+n)n!nx

可得

lim⁡n→∞n!y(y+1)…(y+n)×(x+y)(x+y+1)…(x+y+n)x(x+1)…(x+n)=lim⁡n→∞n!nxx(x+1)…(x+n)×n!nyy(y+1)…(y+n)n!nx+y(x+y)(x+y+1)…(x+y+n)=lim⁡n→∞n!nxx(x+1)…(x+n)×lim⁡n→∞n!nyy(y+1)…(y+n)lim⁡n→∞n!nx+y(x+y)(x+y+1)…(x+y+n)=Γ(x)Γ(y)Γ(x+y) {\lim_{n \rightarrow \infty}{\frac{n!}{y(y + 1)\ldots(y + n)} \times \frac{(x + y)(x + y + 1)\ldots(x + y + n)}{x(x + 1)\ldots(x + n)}} }{= \lim_{n \rightarrow \infty}\frac{\frac{n!n^{x}}{x(x + 1)\ldots(x + n)} \times \frac{n!n^{y}}{y(y + 1)\ldots(y + n)}}{\frac{n!n^{x + y}}{(x + y)(x + y + 1)\ldots(x + y + n)}} }{= \frac{\lim_{n \rightarrow \infty}\frac{n!n^{x}}{x(x + 1)\ldots(x + n)} \times \lim_{n \rightarrow \infty}\frac{n!n^{y}}{y(y + 1)\ldots(y + n)}}{\lim_{n \rightarrow \infty}\frac{n!n^{x + y}}{(x + y)(x + y + 1)\ldots(x + y + n)}} }{= \frac{\Gamma(x)\Gamma(y)}{\Gamma(x + y)}}nlimy(y+1)(y+n)n!×x(x+1)(x+n)(x+y)(x+y+1)(x+y+n)=nlim(x+y)(x+y+1)(x+y+n)n!nx+yx(x+1)(x+n)n!nx×y(y+1)(y+n)n!ny=limn(x+y)(x+y+1)(x+y+n)n!nx+ylimnx(x+1)(x+n)n!nx×limny(y+1)(y+n)n!ny=Γ(x+y)Γ(x)Γ(y)

由于

lim⁡n→∞(nn+y)x=lim⁡n→∞(n+1n+1+y)x=1\lim_{n \rightarrow \infty}\left( \frac{n}{n + y} \right)^{x} = \lim_{n \rightarrow \infty}\left( \frac{n + 1}{n + 1 + y} \right)^{x} = 1nlim(n+yn)x=nlim(n+1+yn+1)x=1

所以

B(x,y)=Γ(x)Γ(y)Γ(x+y)B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x + y)}B(x,y)=Γ(x+y)Γ(x)Γ(y)

【备注】

  1. 中文版《数学分析原理》中翻译有误,原文应为"logB(x,y){log}{B(x,y)}logB(x,y)对于每个固定的yyyxxx的凸函数",翻译版少了log⁡\loglog符号,当然B(x,y)B(x,y)B(x,y)对于每个固定的yyy也是xxx的凸函数,这里的凸函数指的都是向下凸的函数(yyy轴负方向)。

  2. 此证明方法是对原文利用定理8.19的展开说明,关联贝塔函数和伽马函数的是利用了Horlder赫尔德不等式证明它们都具有log⁡\loglog凸特性。

【基于DQN和PyTorch无人机】【多智能体深度Q学习(MA-DQL)】分布式用户连接最大化在基于无人机的通信网络中研究(Python代码实现)内容概要:本文围绕基于DQN和PyTorch的多智能体深度Q学习(MA-DQL)在无人机通信网络中的应用展开研究,重点解决分布式用户连接最大化问题。通过构建多智能体强化学习模型,利用PyTorch框架实现算法训练仿真,优化无人机作为空中基站时的用户接入策略,提升通信网络的覆盖效率资源利用率。文中详细介绍了MA-DQL的网络架构设计、状态-动作空间定义、奖励机制构建及分布式协作机制,并结合Python代码实现验证了方法的有效性优越性。; 适合人群:具备一定深度学习和强化学习基础,熟悉PyTorch框架,从事无线通信、无人机网络或智能优化方向研究的研究生及科研人员。; 使用场景及目标:①应用于无人机辅助的无线通信网络中,实现用户连接的智能调度资源优化;②为多智能体强化学习在分布式决策问题中的落地提供实践参考;③支持科研复现算法改进,推动智能通信网络的发展。; 阅读建议:建议读者结合提供的Python代码进行实践操作,深入理解MA-DQL在实际通信场景中的建模过程,重点关注多智能体间的协同机制奖励函数设计,同时可扩展至更复杂的动态环境大规模网络场景中进行验证。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值