【定理8.20】
如果x>0x > 0x>0,又y>0y > 0y>0,那么
∫01tx−1(1−t)y−1dt=Γ(x)Γ(y)Γ(x+y)\int_{0}^{1}{t^{x - 1}(1 - t)^{y - 1}dt} = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x + y)}∫01tx−1(1−t)y−1dt=Γ(x+y)Γ(x)Γ(y)
这个积分是所谓的BBB函数B(x,y)B(x,y)B(x,y)。
【证明】
首先B(x+1,y)B(x + 1,y)B(x+1,y)对应的定积分是存在的,这是因为
B(x+1,y)=∫01tx(1−t)y−1dtB(x + 1,y) = \int_{0}^{1}{t^{x}(1 - t)^{y - 1}dt}B(x+1,y)=∫01tx(1−t)y−1dt
其中
tx<1t^{x} < 1tx<1
B(x+1,y)<∫01(1−t)y−1dtB(x + 1,y) < \int_{0}^{1}{(1 - t)^{y - 1}dt}B(x+1,y)<∫01(1−t)y−1dt
而瑕积分
∫01(1−t)y−1dt=−(1−t)yy ∣01=1y\int_{0}^{1}{(1 - t)^{y - 1}dt} = - \frac{(1 - t)^{y}}{y}\left. \ \right|_{0}^{1} = \frac{1}{y}∫01(1−t)y−1dt=−y(1−t)y ∣01=y1
同理B(x,y+1)B(x,y + 1)B(x,y+1)对应的定积分是存在的。
由于
B(x,y)=∫01tx−1(1−t)y−1dt=∫01tx−1(1−t)y−1(t+1−t)dt=∫01tx(1−t)y−1dt+∫01tx−1(1−t)ydt=B(x+1,y)+B(x,y+1){B(x,y) }{= \int_{0}^{1}{t^{x - 1}(1 - t)^{y - 1}dt} }{= \int_{0}^{1}{t^{x-1}(1 - t)^{y - 1}(t + 1 - t)dt} }{= \int_{0}^{1}{t^{x}(1 - t)^{y - 1}dt} + \int_{0}^{1}{t^{x - 1}(1 - t)^{y}dt} }{= B(x + 1,y) + B(x,y + 1)}B(x,y)=∫01tx−1(1−t)y−1dt=∫01tx−1(1−t)y−1(t+1−t)dt=∫01tx(1−t)y−1dt+∫01tx−1(1−t)ydt=B(x+1,y)+B(x,y+1)
所以定积分
∫01tx−1(1−t)y−1dt\int_{0}^{1}{t^{x - 1}(1 - t)^{y - 1}dt}∫01tx−1(1−t)y−1dt
存在。
又根据分部积分可知
B(x+1,y)=∫01tx(1−t)y−1dt=−tx(1−t)yy ∣01+xy∫01tx−1(1−t)ydt=xyB(x,y+1){B(x + 1,y) }{= \int_{0}^{1}{t^{x}(1 - t)^{y - 1}dt} }{= - \frac{t^{x}(1 - t)^{y}}{y}\left. \ \right|_{0}^{1} + \frac{x}{y}\int_{0}^{1}{t^{x - 1}(1 - t)^{y}dt} }{= \frac{x}{y}B(x,y + 1)}B(x+1,y)=∫01tx(1−t)y−1dt=−ytx(1−t)y ∣01+yx∫01tx−1(1−t)ydt=yxB(x,y+1)
所以
B(x+1,y)=xx+yB(x,y)B(x + 1,y) = \frac{x}{x + y}B(x,y)B(x+1,y)=x+yxB(x,y)
B(x,y+1)=yx+yB(x,y)B(x,y + 1) = \frac{y}{x + y}B(x,y)B(x,y+1)=x+yyB(x,y)
根据递推关系可知
B(x+n,y)=x…(x+n−1)(x+y)(x+y+1)…(x+y+n−1)B(x,y)B(x + n,y) = \frac{x\ldots(x + n - 1)}{(x + y)(x + y + 1)\ldots(x + y + n - 1)}B(x,y)B(x+n,y)=(x+y)(x+y+1)…(x+y+n−1)x…(x+n−1)B(x,y)
而
B(1,1)=1B(1,1) = 1B(1,1)=1
所以当xxx为整数时定理成立,此时
B(1,y)=1yB(1,y) = \frac{1}{y}B(1,y)=y1
B(n,y)=(n−1)!y(y+1)…(y+n−1)B(n,y) = \frac{(n - 1)!}{y(y + 1)\ldots(y + n - 1)}B(n,y)=y(y+1)…(y+n−1)(n−1)!
下面仅需证明0<x<10 < x < 10<x<1时定理成立即可
固定yyy不变,根据Horlder赫尔德不等式,可知logB(x,y){log}{B(x,y)}logB(x,y)是关于xxx的凸函数。所以
logB(n+1,y)−logB(n,y)≤logB(x+n+1,y)−logB(n+1,y)x≤logB(n+2,y)−logB(n+1,y)\log{B(n + 1,y)} - {log}{B(n,y)} \leq \frac{\log{B(x + n + 1,y)} - {log}{B(n + 1,y)}}{x} \leq \log{B(n + 2,y)} - {log}{B(n + 1,y)}logB(n+1,y)−logB(n,y)≤xlogB(x+n+1,y)−logB(n+1,y)≤logB(n+2,y)−logB(n+1,y)
整理得
lognn+y≤logB(x+n+1,y)−logB(n+1,y)x≤logn+1n+1+y{log}\frac{n}{n + y} \leq \frac{\log{B(x + n + 1,y)} - {log}{B(n + 1,y)}}{x} \leq {log}\frac{n + 1}{n + 1 + y}logn+yn≤xlogB(x+n+1,y)−logB(n+1,y)≤logn+1+yn+1
继续整理得
B(n+1,y)×(nn+y)x≤B(x+n+1,y)≤B(n+1,y)×(n+1n+1+y)xB(n + 1,y) \times \left( \frac{n}{n + y} \right)^{x} \leq B(x + n + 1,y) \leq B(n + 1,y) \times \left( \frac{n + 1}{n + 1 + y} \right)^{x}B(n+1,y)×(n+yn)x≤B(x+n+1,y)≤B(n+1,y)×(n+1+yn+1)x
所以
n!y(y+1)…(y+n)×(x+y)(x+y+1)…(x+y+n)x(x+1)…(x+n)×(nn+y)x≤B(x,y)≤n!y(y+1)…(y+n)×(x+y)(x+y+1)…(x+y+n)x(x+1)…(x+n)×(n+1n+1+y)x\frac{n!}{y(y + 1)\ldots(y + n)} \times \frac{(x + y)(x + y + 1)\ldots(x + y + n)}{x(x + 1)\ldots(x + n)} \times \left( \frac{n}{n + y} \right)^{x} \leq B(x,y) \leq \frac{n!}{y(y + 1)\ldots(y + n)} \times \frac{(x + y)(x + y + 1)\ldots(x + y + n)}{x(x + 1)\ldots(x + n)} \times \left( \frac{n + 1}{n + 1 + y} \right)^{x}y(y+1)…(y+n)n!×x(x+1)…(x+n)(x+y)(x+y+1)…(x+y+n)×(n+yn)x≤B(x,y)≤y(y+1)…(y+n)n!×x(x+1)…(x+n)(x+y)(x+y+1)…(x+y+n)×(n+1+yn+1)x
根据
Γ(x)=limn→∞n!nxx(x+1)…(x+n)\Gamma(x) = \lim_{n \rightarrow \infty}\frac{n!n^{x}}{x(x + 1)\ldots(x + n)}Γ(x)=n→∞limx(x+1)…(x+n)n!nx
可得
limn→∞n!y(y+1)…(y+n)×(x+y)(x+y+1)…(x+y+n)x(x+1)…(x+n)=limn→∞n!nxx(x+1)…(x+n)×n!nyy(y+1)…(y+n)n!nx+y(x+y)(x+y+1)…(x+y+n)=limn→∞n!nxx(x+1)…(x+n)×limn→∞n!nyy(y+1)…(y+n)limn→∞n!nx+y(x+y)(x+y+1)…(x+y+n)=Γ(x)Γ(y)Γ(x+y) {\lim_{n \rightarrow \infty}{\frac{n!}{y(y + 1)\ldots(y + n)} \times \frac{(x + y)(x + y + 1)\ldots(x + y + n)}{x(x + 1)\ldots(x + n)}} }{= \lim_{n \rightarrow \infty}\frac{\frac{n!n^{x}}{x(x + 1)\ldots(x + n)} \times \frac{n!n^{y}}{y(y + 1)\ldots(y + n)}}{\frac{n!n^{x + y}}{(x + y)(x + y + 1)\ldots(x + y + n)}} }{= \frac{\lim_{n \rightarrow \infty}\frac{n!n^{x}}{x(x + 1)\ldots(x + n)} \times \lim_{n \rightarrow \infty}\frac{n!n^{y}}{y(y + 1)\ldots(y + n)}}{\lim_{n \rightarrow \infty}\frac{n!n^{x + y}}{(x + y)(x + y + 1)\ldots(x + y + n)}} }{= \frac{\Gamma(x)\Gamma(y)}{\Gamma(x + y)}}n→∞limy(y+1)…(y+n)n!×x(x+1)…(x+n)(x+y)(x+y+1)…(x+y+n)=n→∞lim(x+y)(x+y+1)…(x+y+n)n!nx+yx(x+1)…(x+n)n!nx×y(y+1)…(y+n)n!ny=limn→∞(x+y)(x+y+1)…(x+y+n)n!nx+ylimn→∞x(x+1)…(x+n)n!nx×limn→∞y(y+1)…(y+n)n!ny=Γ(x+y)Γ(x)Γ(y)
由于
limn→∞(nn+y)x=limn→∞(n+1n+1+y)x=1\lim_{n \rightarrow \infty}\left( \frac{n}{n + y} \right)^{x} = \lim_{n \rightarrow \infty}\left( \frac{n + 1}{n + 1 + y} \right)^{x} = 1n→∞lim(n+yn)x=n→∞lim(n+1+yn+1)x=1
所以
B(x,y)=Γ(x)Γ(y)Γ(x+y)B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x + y)}B(x,y)=Γ(x+y)Γ(x)Γ(y)
【备注】
-
中文版《数学分析原理》中翻译有误,原文应为"logB(x,y){log}{B(x,y)}logB(x,y)对于每个固定的yyy是xxx的凸函数",翻译版少了log\loglog符号,当然B(x,y)B(x,y)B(x,y)对于每个固定的yyy也是xxx的凸函数,这里的凸函数指的都是向下凸的函数(yyy轴负方向)。
-
此证明方法是对原文利用定理8.19的展开说明,关联贝塔函数和伽马函数的是利用了Horlder赫尔德不等式证明它们都具有log\loglog凸特性。
1万+

被折叠的 条评论
为什么被折叠?



