Sylvester矩阵的应用——结式性质及其计算

【定义】

F F F是域,非 0 0 0多项式 f 、 g ∈ F [ x ] f、g \in F\lbrack x\rbrack fgF[x],且 deg ⁡ ( f ) = n 、 deg ⁡ ( g ) = m \deg(f) = n、\deg(g) = m deg(f)=ndeg(g)=m。则 S y l v e s t e r Sylvester Sylvester矩阵 S S S定义如下:

S = ( f n       g m           f n − 1 f n     g m − 1 g m         ⋮ ⋮ ⋱   ⋮ ⋮ ⋱       ⋮ ⋮   f n g 1 ⋮   ⋱     ⋮ ⋮   f n − 1 g 0 ⋮     ⋱   ⋮ ⋮   ⋮   g 0       g m f 0 ⋮   ⋮     ⋱     ⋮   f 0   ⋮       ⋱   ⋮     ⋱ ⋮         ⋱ ⋮       f 0           g 0 ) S = \begin{pmatrix} f_{n} & \ & \ & \ & g_{m} & \ & \ & \ & \ & \ \\ f_{n - 1} & f_{n} & \ & \ & g_{m - 1} & g_{m} & \ & \ & \ & \ \\ \vdots & \vdots & \ddots & \ & \vdots & \vdots & \ddots & \ & \ & \ \\ \vdots & \vdots & \ & f_{n} & g_{1} & \vdots & \ & \ddots & \ & \ \\ \vdots & \vdots & \ & f_{n - 1} & g_{0} & \vdots & \ & \ & \ddots & \ \\ \vdots & \vdots & \ & \vdots & \ & g_{0} & \ & \ & \ & g_{m} \\ f_{0} & \vdots & \ & \vdots & \ & \ & \ddots & \ & \ & \vdots \\ \ & f_{0} & \ & \vdots & \ & \ & \ & \ddots & \ & \vdots \\ \ & \ & \ddots & \vdots & \ & \ & \ & \ & \ddots & \vdots \\ \ & \ & \ & f_{0} & \ & \ & \ & \ & \ & g_{0} \end{pmatrix} S= fnfn1f0    fnf0             fnfn1f0gmgm1g1g0      gmg0                                 gmg0

其中 f f f部分有 m m m列, g g g部分有 n n n列。称 det ⁡ ( S ) \det(S) det(S) f 、 g f、g fg关于 x x x的结式,记作 r e s ( f , g , x ) res(f,g,x) res(f,g,x)

【定理】

F F F是域,非 0 0 0多项式 f 、 g ∈ F [ x ] f、g \in F\lbrack x\rbrack fgF[x],且 deg ⁡ ( f ) = n 、 deg ⁡ ( g ) = m \deg(f) = n、\deg(g) = m deg(f)=ndeg(g)=m,则下面三个命题等价:

  1. gcd ⁡ ( f ,   g ) ≠ 1 \gcd(f,\ g) \neq 1 gcd(f, g)=1

  2. 存在非0多项式 s 、 t ∈ F [ x ] s、t \in F\lbrack x\rbrack stF[x],使得

s f + t g = 0 sf + tg = 0 sf+tg=0 deg ⁡ ( s ) < deg ⁡ ( g ) \deg(s) < \deg(g) deg(s)<deg(g) deg ⁡ ( t ) < deg ⁡ ( f ) \deg(t) < \deg(f) deg(t)<deg(f)

  1. r e s ( f , g , x ) = 0 res(f,g,x) = 0 res(f,g,x)=0

【证明】

1 ⇒ 2 1 \Rightarrow 2 12

h = gcd ⁡ ( f ,   g ) h = \gcd(f,\ g) h=gcd(f, g),那么可以让 s = g h 、  t = − f h s = \frac{g}{h}、\ t = - \frac{f}{h} s=hg t=hf,满足2的结果。

2 ⇒ 1 2 \Rightarrow 1 21

由于 s f = − t g sf = - tg sf=tg,若 gcd ⁡ ( f ,   g ) = 1 \gcd(f,\ g) = 1 gcd(f, g)=1,那么 f 、 g f、g fg互素,必然有 f ∣ t f|t ft,但这与 t ≠ 0 t \neq 0 t=0 deg ⁡ f > deg ⁡ t \deg f > \deg t degf>degt矛盾,因此 gcd ⁡ ( f ,   g ) ≠ 1 \gcd(f,\ g) \neq 1 gcd(f, g)=1

2 ⇒ 3 2 \Rightarrow 3 23

d → = ( s m − 1 ⋮ s 1 s 0 t n − 1 ⋮ t 0 ) \overrightarrow{d} = \begin{pmatrix} s_{m - 1} \\ \vdots \\ s_{1} \\ s_{0} \\ t_{n - 1} \\ \vdots \\ t_{0} \end{pmatrix} d = sm1s1s0tn1t0 ,那么必然有 S ∙ d → = 0 → S \bullet \overrightarrow{d} = \overrightarrow{0} Sd =0 。因为 d → ≠ 0 → \overrightarrow{d} \neq \overrightarrow{0} d =0 ,所以 det ⁡ ( S ) = 0 \det(S) = 0 det(S)=0,也就是 r e s ( f , g , x ) = 0 res(f,g,x) = 0 res(f,g,x)=0

3 ⇒ 2 3 \Rightarrow 2 32

因为 det ⁡ ( S ) = r e s ( f , g , x ) = 0 \det(S) = res(f,g,x) = 0 det(S)=res(f,g,x)=0,所以存在 d → ≠ 0 → \overrightarrow{d} \neq \overrightarrow{0} d =0 使得 S ∙ d → = 0 → S \bullet \overrightarrow{d} = \overrightarrow{0} Sd =0

S S S分为两部分:

S = [ S f S g ] S = \begin{bmatrix} S_{f} & S_{g} \end{bmatrix} S=[SfSg]

S f = ( f n       f n − 1 f n     ⋮ ⋮ ⋱   ⋮ ⋮   f n ⋮ ⋮   f n − 1 ⋮ ⋮   ⋮ f 0 ⋮   ⋮   f 0   ⋮     ⋱ ⋮       f 0 ) S_{f} = \begin{pmatrix} f_{n} & \ & \ & \ \\ f_{n - 1} & f_{n} & \ & \ \\ \vdots & \vdots & \ddots & \ \\ \vdots & \vdots & \ & f_{n} \\ \vdots & \vdots & \ & f_{n - 1} \\ \vdots & \vdots & \ & \vdots \\ f_{0} & \vdots & \ & \vdots \\ \ & f_{0} & \ & \vdots \\ \ & \ & \ddots & \vdots \\ \ & \ & \ & f_{0} \end{pmatrix} Sf= fnfn1f0    fnf0             fnfn1f0

S g = ( g m           g m − 1 g m         ⋮ ⋮ ⋱       g 1 ⋮   ⋱     g 0 ⋮     ⋱     g 0       g m     ⋱     ⋮       ⋱   ⋮         ⋱ ⋮           g 0 ) S_{g} = \begin{pmatrix} g_{m} & \ & \ & \ & \ & \ \\ g_{m - 1} & g_{m} & \ & \ & \ & \ \\ \vdots & \vdots & \ddots & \ & \ & \ \\ g_{1} & \vdots & \ & \ddots & \ & \ \\ g_{0} & \vdots & \ & \ & \ddots & \ \\ \ & g_{0} & \ & \ & \ & g_{m} \\ \ & \ & \ddots & \ & \ & \vdots \\ \ & \ & \ & \ddots & \ & \vdots \\ \ & \ & \ & \ & \ddots & \vdots \\ \ & \ & \ & \ & \ & g_{0} \end{pmatrix} Sg= gmgm1g1g0      gmg0                                 gmg0

r ( S f ) = m 、 r ( S g ) = n r\left( S_{f} \right) = m、r\left( S_{g} \right) = n r(Sf)=mr(Sg)=n

d → \overrightarrow{d} d 分为两部分:

d → = [ d f → d g → ] \overrightarrow{d} = \begin{bmatrix} \overrightarrow{d_{f}} \\ \overrightarrow{d_{g}} \end{bmatrix} d =[df dg ]

其中 d f → \overrightarrow{d_{f}} df m m m维度的, d g → \overrightarrow{d_{g}} dg n n n维度的。

由于 S ∙ d → = [ S f S g ] ∙ [ d f → d g → ] = [ S f ∙ d f → + S g ∙ d g → ] = 0 → S \bullet \overrightarrow{d} = \begin{bmatrix} S_{f} & S_{g} \end{bmatrix} \bullet \begin{bmatrix} \overrightarrow{d_{f}} \\ \overrightarrow{d_{g}} \end{bmatrix} = \left\lbrack S_{f} \bullet \overrightarrow{d_{f}} + S_{g} \bullet \overrightarrow{d_{g}} \right\rbrack = \overrightarrow{0} Sd =[SfSg][df dg ]=[Sfdf +Sgdg ]=0

d f → = 0 → \overrightarrow{d_{f}} = \overrightarrow{0} df =0 时, S g ∙ d g → = 0 S_{g} \bullet \overrightarrow{d_{g}} = 0 Sgdg =0,同时又因为 r ( S g ) = n r\left( S_{g} \right) = n r(Sg)=n S g S_{g} Sg的列向量线性无关,所以 d g → = 0 → \overrightarrow{d_{g}} = \overrightarrow{0} dg =0 ;同理,当 d g → = 0 → \overrightarrow{d_{g}} = \overrightarrow{0} dg =0 时, S f ∙ d f → = 0 S_{f} \bullet \overrightarrow{d_{f}} = 0 Sfdf =0,同时又因为 r ( S f ) = m r\left( S_{f} \right) = m r(Sf)=m S f S_{f} Sf的列向量线性无关,所以 d f → = 0 → \overrightarrow{d_{f}} = \overrightarrow{0} df =0 。又因为 d → ≠ 0 → \overrightarrow{d} \neq \overrightarrow{0} d =0 ,所以 d f → ≠ 0 → 、 d g → ≠ 0 → \overrightarrow{d_{f}} \neq \overrightarrow{0}、\overrightarrow{d_{g}} \neq \overrightarrow{0} df =0 dg =0 。让向量 d f → \overrightarrow{d_{f}} df 组成 s s s的系数,向量 d g → \overrightarrow{d_{g}} dg 组成 t t t的系数,从而找到非0多项式 s 、 t ∈ F [ x ] s、t \in F\lbrack x\rbrack stF[x],满足2的结论。

  • 17
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值