整环中有关素元、不可约元、极大理想、素理想的关系

一、交换幺环中,定义素理想

  1. 极大理想中不含单位元

因为一旦理想中包含了单位元,它乘以 R R R中的任何元素都将属于该理想,也就是任何元素都是该理想的元素,该理想就是 R R R,从而不再是极大理想。

  1. 极大理想是子环(一定含零元)

这是因为极大理想的加法和乘法运算都是封闭的。

  1. 极大理想都是素理想

证明思路:对于 a ∈ R 、 b ∈ R 、 a b ∈ I a \in R、b \in R、ab \in I aRbRabI,若 a ∉ I 、 b ∉ I a \notin I、b \notin I a/Ib/I,那么 I + ( a ) = R 、 I + ( b ) = R I + (a) = R、I + (b) = R I+(a)=RI+(b)=R,从而 a + i a = 1 、 b + i b = 1 a + i_{a} = 1 、b + i_{b} = 1 a+ia=1b+ib=1,然后利用 ( a + i a ) ( b + i b ) = 1 (a + i_{a})(b + i_{b} )=1 (a+ia)(b+ib)=1,可得出矛盾。

二、一般整环中

  1. 素元都是不可约元

证明思路:设 a b = p ab = p ab=p,从而 p ∣ a ∨ p ∣ b p|a \vee p|b papb,从而 a = p u a ∨ b = p u b a = pu_{a} \vee b = pu_{b} a=puab=pub,通过带入计算,由于整环不含零因子,可得 a 、 b a、b ab是可逆元或者 p p p的伴随元。

  1. R / I R/I R/I是整环 ⇔ I \Leftrightarrow I I是素理想

证明思路:因为是整环,所以不含零因子,从而 I I I是素理想; I I I是素理想,若 a b ∈ I ab \in I abI,也就是 ( a + I ) ( b + I ) = 0 + I (a + I)(b + I) = 0 + I (a+I)(b+I)=0+I,那么 ( a + I ) = 0 + I ∨ ( b + I ) = 0 + I (a + I)= 0 + I \vee (b + I)= 0 + I (a+I)=0+I(b+I)=0+I,从而 R / I R/I R/I不含零因子。

  1. I ≠ R I \neq R I=R时, R / I R/I R/I是域 ⇔ I \Leftrightarrow I I是极大理想

证明思路:因为域中每个元素都含逆元,任取 a ∉ I a \notin I a/I,可得 ( a + I ) ( b + I ) = 1 + I (a + I)(b + I) = 1 + I (a+I)(b+I)=1+I,从而 1 ∈ ( ( a ) + I ) 1\in((a) + I) 1((a)+I),即 ( a ) + I = R (a) + I=R (a)+I=R;因为 I I I是极大理想,所以 ( a ) + I = R (a) + I = R (a)+I=R,也就能找到 b b b满足 a b = 1 + i ab = 1 + i ab=1+i,从而找到了 ( a + I ) (a+I) (a+I)的逆元 ( b + I ) (b+I) (b+I)满足 ( a + I ) ( b + I ) = 1 + I (a+I)(b+I)=1+I (a+I)(b+I)=1+I

  1. p p p是素元 ⇔ ( p ) \Leftrightarrow (p) (p)是非零素理想

证明思路: ( p ) (p) (p)中的元素 a a a都意味着 p ∣ a p|a pa,“生成的主理想” ⟺ \Longleftrightarrow "两元素存在整除关系"。

三、特殊整环:欧几里得整环 ⊆ \subseteq 主理想整环 ⊆ \subseteq 唯一因子分解整环

  1. 在主理想整环中,素元 ⟺ \Longleftrightarrow 不可约元(用于证明 主理想整环 ⊆ \subseteq 唯一因子分解整环)

证明思路:主要是证明不可约元是素元,对于任意的 p ∣ a b p|ab pab,有 ( a , p ) 、 ( b , p ) (a,p)、(b,p) (a,p)(b,p)是极大理想 ( p ) (p) (p)或者 R = ( 1 ) R = (1) R=(1),从而得出 a ∼ p ∨ b ∼ p a\sim p \vee b\sim p apbp,也就是 p ∣ a ∨ p ∣ b p|a \vee p|b papb

  1. 在唯一因子分解整环中, 素元 ⟺ \Longleftrightarrow 不可约元

这个通过因子排列规律、伴随元定义可以得到。

  1. 在主理想整环中, p p p是不可约元 ⟺ ( p ) \Longleftrightarrow (p) (p)是极大理想

证明思路:考虑 a ∣ p a|p ap,根据极大理想的定义和不可约的定义,可得 a ∼ 1 ∨ a ∼ p a\sim 1 \vee a\sim p a1ap

在这里插入图片描述

  • 28
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值