自然对数e的两种极限定义

【定义】

e = ∑ n = 0 ∞ 1 n ! e = \sum_{n = 0}^{\infty}\frac{1}{n!} e=n=0n!1

【定理】

lim ⁡ n → ∞ ( 1 + 1 n ) n = e \lim_{n \rightarrow \infty}\left( 1 + \frac{1}{n} \right)^{n} = e nlim(1+n1)n=e

【证明】

s n = ∑ i = 0 n 1 i ! s_{n} = \sum_{i = 0}^{n}\frac{1}{i!} sn=i=0ni!1

t n = ( 1 + 1 n ) n t_{n} = \left( 1 + \frac{1}{n} \right)^{n} tn=(1+n1)n

那么

t n = 1 + C n 1 1 n + C n 2 1 n 2 + C n 3 1 n 3 + … + C n n 1 n n t_{n} = 1 + C_{n}^{1}\frac{1}{n} + C_{n}^{2}\frac{1}{n^{2}} + C_{n}^{3}\frac{1}{n^{3}} + \ldots + C_{n}^{n}\frac{1}{n^{n}} tn=1+Cn1n1+Cn2n21+Cn3n31++Cnnnn1

= 1 + 1 + 1 2 ! ( 1 − 1 n ) + 1 3 ! ( 1 − 1 n ) ( 1 − 2 n ) + … + 1 n ! ( 1 − 1 n ) ( 1 − 2 n ) … ( 1 − n − 1 n ) = 1 + 1 + \frac{1}{2!}\left( 1 - \frac{1}{n} \right) + \frac{1}{3!}\left( 1 - \frac{1}{n} \right)\left( 1 - \frac{2}{n} \right) + \ldots + \frac{1}{n!}\left( 1 - \frac{1}{n} \right)\left( 1 - \frac{2}{n} \right)\ldots\left( 1 - \frac{n - 1}{n} \right) =1+1+2!1(1n1)+3!1(1n1)(1n2)++n!1(1n1)(1n2)(1nn1)

根据伯努利不等式

a 1 , a 2 … … a n > − 1           a 1 , a 2 … … a n 同号 a_{1},a_{2}\ldots\ldots a_{n} > - 1\ \ \ \ \ \ \ \ \ a_{1},a_{2}\ldots\ldots a_{n}同号 a1,a2……an>1         a1,a2……an同号

( 1 + a 1 ) ( 1 + a 2 ) … ( 1 + a n ) ≥ 1 + a 1 + a 2 + … + a n \left( 1 + a_{1} \right)\left( 1 + a_{2} \right)\ldots\left( 1 + a_{n} \right) \geq 1 + a_{1} + a_{2} + \ldots + a_{n} (1+a1)(1+a2)(1+an)1+a1+a2++an

所以

s n − t n = 1 2 ! [ 1 − ( 1 − 1 n ) ] + 1 3 ! [ 1 − ( 1 − 1 n ) ( 1 − 2 n ) ] + … + 1 n ! [ 1 − ( 1 − 1 n ) ( 1 − 2 n ) … ( 1 − n − 1 n ) ] s_{n} - t_{n} = \frac{1}{2!}\left\lbrack 1 - \left( 1 - \frac{1}{n} \right) \right\rbrack + \frac{1}{3!}\left\lbrack 1 - \left( 1 - \frac{1}{n} \right)\left( 1 - \frac{2}{n} \right) \right\rbrack + \ldots + \frac{1}{n!}\left\lbrack 1 - \left( 1 - \frac{1}{n} \right)\left( 1 - \frac{2}{n} \right)\ldots\left( 1 - \frac{n - 1}{n} \right) \right\rbrack sntn=2!1[1(1n1)]+3!1[1(1n1)(1n2)]++n!1[1(1n1)(1n2)(1nn1)]

= ∑ i = 2 n 1 i ! [ 1 − ∏ j = 1 i − 1 ( 1 − j n ) ] = \sum_{i = 2}^{n}{\frac{1}{i!}\left\lbrack 1 - \prod_{j = 1}^{i - 1}\left( 1 - \frac{j}{n} \right) \right\rbrack} =i=2ni!1[1j=1i1(1nj)]

≤ ∑ i = 2 n 1 i ! ( ∑ j = 1 i − 1 j n ) \leq \sum_{i = 2}^{n}{\frac{1}{i!}\left( \sum_{j = 1}^{i - 1}\frac{j}{n} \right)} i=2ni!1(j=1i1nj)

= ∑ i = 2 n [ 1 i ! × i ( i − 1 ) 2 n ] = \sum_{i = 2}^{n}\left\lbrack \frac{1}{i!} \times \frac{i(i - 1)}{2n} \right\rbrack =i=2n[i!1×2ni(i1)]

= 1 2 n ∑ i = 2 n 1 ( i − 2 ) ! = \frac{1}{2n}\sum_{i = 2}^{n}\frac{1}{(i - 2)!} =2n1i=2n(i2)!1

< e 2 n < \frac{e}{2n} <2ne

所以

lim ⁡ n → ∞ s n − t n ≤ lim ⁡ n → ∞ e 2 n = 0 \lim_{n \rightarrow \infty}{s_{n} - t_{n}} \leq \lim_{n \rightarrow \infty}\frac{e}{2n} = 0 nlimsntnnlim2ne=0

由于 s n > t n s_{n} > t_{n} sn>tn,所以

lim ⁡ n → ∞ t n = lim ⁡ n → ∞ s n \lim_{n \rightarrow \infty}t_{n} = \lim_{n \rightarrow \infty}s_{n} nlimtn=nlimsn

lim ⁡ n → ∞ ( 1 + 1 n ) n = e \lim_{n \rightarrow \infty}\left( 1 + \frac{1}{n} \right)^{n} = e nlim(1+n1)n=e

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值