BZOJ3037/CH6401 创世纪(贪心 or 基环树dp)

3 篇文章 0 订阅
2 篇文章 0 订阅

题意:上帝手中有 N(N≤10^6) 种世界元素,每种元素可以限制另外1种元素,把第 i 种世界元素能够限制的那种世界元素记为 A[i]。现在,上帝要把它们中的一部分投放到一个新的空间中去建造世界。为了世界的和平与安宁,上帝希望所有被投放的世界元素都有至少一个没有被投放的世界元素限制它。上帝希望知道,在此前提下,他最多可以投放多少种世界元素?

分析:

方法一:入度为0的点x,由于x无法被控制,所以只能不选。选择x控制的节点a[x]投放一定是最优的。 选择a[x]之后,a[a[x]]就不能被a[x]限制了,把他的度数-1,如果a[a[x]]的度数=0,说明他也可以去限制别人了,把他加入待转移集合中(本质上就是拓扑)。环上的点是不会被加入集合的,对于一个长度为cnt的环,可以选择投放的点为cnt/2个(隔一个选一个),求出每一颗内向树环的长度即可。参考https://blog.csdn.net/CABI_ZGX/article/details/83501714

方法二:基环树dp,详见《算法竞赛进阶指南》P389,不过有些细节还没搞透,还要回过头来再看。

代码一(方法一):

#include<bits/stdc++.h>
using namespace std;
#define ll long long
const int N=1e6+10;
int n,a[N],du[N],q[N],l,r;
bool v[N];

int main(){
    scanf("%d",&n);
	for(int i=1;i<=n;i++){
		scanf("%d",&a[i]);
		du[a[i]]++;
	}
	l=1; r=0;
	for(int i=1;i<=n;i++)
		if(du[i]==0)
			q[++r]=i;
	int ans=0;
	while(l<=r){
		int x=q[l];
		if(!v[x] && !v[a[x]]){
			ans++;
			v[a[x]]=1;
			du[a[a[x]]]--; if(du[a[a[x]]]==0) q[++r]=a[a[x]];
		}
		v[q[l]]=1; l++;
	}
	int cnt=0,j;
	for(int i=1;i<=n;i++){
		if(!v[i]){
			cnt=0;
			j=i;
			while(a[j]!=i){
				v[j]=1;
				cnt++;
				j=a[j];
			}
			v[j]=1;
			ans+=(cnt+1)/2;
		}
	}
	printf("%d\n",ans);
	return 0;
}

代码二(方法二):

#include<bits/stdc++.h>
using namespace std;
const int N = 1000006, INF = 0x3f3f3f3f;
int n, fa[N], t, k, f[N][2], s[N][2], ans;
int Head[N], Edge[N<<1], Next[N<<1], tot;

int get(int x) {
	if (x == fa[x]) return x;
	return fa[x] = get(fa[x]);
}

inline void add(int x, int y) {
	Edge[++tot] = y;
	Next[tot] = Head[x];
	Head[x] = tot;
}

void dfs(int x) {
	int num = INF;
	f[x][0] = 0;
	for (int i = Head[x]; i; i = Next[i]) {
		if (Edge[i] != k) dfs(Edge[i]);
		f[x][0] += max(f[Edge[i]][0], f[Edge[i]][1]);
		num = min(num, max(f[Edge[i]][0], f[Edge[i]][1]) - f[Edge[i]][0]);
	}
	f[x][1] = f[x][0] + 1 - num;
}

int main() {
	cin >> n;
	for (int i = 1; i <= n; i++) fa[i] = i;
	for (int i = 1; i <= n; i++) {
		int x;
		scanf("%d", &x);
		int p = get(x), q = get(i);
		if (p == q) {
			s[++t][0] = x;
			s[t][1] = i;
		} else {
			add(x, i);
			fa[q] = p;
		}
	}
	for (int i = 1; i <= t; i++) {
		k = 0;
		dfs(s[i][0]);
		k = s[i][0];
		dfs(s[i][1]);
		int now = f[s[i][1]][1];
		f[s[i][0]][1] = f[s[i][0]][0] + 1;///强制连接 p和A[p]
		dfs(s[i][1]);
		ans += max(now, f[s[i][1]][0]);
	}
	cout << ans << endl;
	return 0;
}

 

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值