【小技巧】如何向论文原作者索要数据集和源码

本文分享了向论文作者请求源代码和数据集的经验,提供了英文邮件模板,适用于缺少资源时直接联系作者获取。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近看了一篇文章,觉得可以继续做一做,但是没有源代码和数据集,要是自己还原起来,很麻烦,得自己重新设计一遍。跟老师汇报的时候,老师说为什么不问作者直接要呢?发个邮件的事情啊。顿时豁然开朗,以前没干过这种事情,所以忘了还有这个渠道了。很多时候论文里没有给github链接的时候,这确实是个不错的方法哈。

基于我们看的论文一般都是英文的,所以邮件也用英文的写罢。

主要突出几个点就可以了:

  1. 简单介绍下自己;
  2. 自己的研究方向是什么,看了对方的哪一篇论文,感觉很吸引自己,表现一下对这个工作的赞美;
  3. 委婉的问一下是否能够给提供一下数据集和源码,简单说一下意图。

个人感觉就这些了。

下面是从网上找来的一个简单的模板:


Hi Professor xxx :

Thank you for reading!
I am a third-year  undergraduate  at xxx University, China.
My research is focused on xxx. I have recently read your paper: " xxxxx". The  work was so interesting and it was attractive to me.
I am wondering if you could kindly send me the source program, dataset and the necessary information about it. I promise they will be used only for research purposed.
      Thank you very much for your kind consideration and I am looking forward to your early reply.

All the best,

xxx

### GlaS 数据集概述 GlaS (Glasgow) 数据集是一个专注于腺体结构分割的医学图像数据集,特别适用于评估训练计算机视觉算法在病理图像中的表现。该数据集来源于《癌症基因组图谱》,并经过精心处理以适应研究需求[^4]。 ### 数据集特点 - **图像来源**:图像取自结直肠癌患者的组织切片扫描图片。 - **分辨率与数量**:每张图像分辨率为1000×1000像素;整个数据集中共有165幅高质量彩色显微照片。 - **标注质量**:所有图像均由经验丰富的病理学家手动勾勒边界线完成精确标记,确保了高精度的真实标签信息。 - **多样性**:考虑到不同实验室间可能存在染色习惯上的细微差别,因此本集合内包含了多种类型的染色效果,增加了模型泛化能力测试的价值。 ### 获取途径 对于希望获取此数据集的研究人员来说,可以通过以下几种方式进行访问: #### 方法一:公开平台下载 部分科研机构会定期开放一些公共资源供全球学者免费使用。例如,在Kaggle平台上有时能找到官方发布的版本链接。不过需要注意的是,具体可用性取决于当前是否有正在进行的比赛项目涉及此类资源。 #### 方法二:学术合作申请 如果上述渠道不可得,则建议联系原作者团队或参与过该项目的合作单位请求协助。通常情况下,只要用途合理合法,并遵循相应的伦理规定,大多数时候可以获得授权许可。 #### 方法三:第三方托管站点 除了直接向发布者索要外,还可以尝试查找其他可信的数据存储库网站,比如Zenodo、Figshare等。这些地方经常会有研究人员上传自己的研究成果及相关资料共享给同行评审或其他目的使用者查阅。 ### 使用指南 当成功获得GlaS数据集之后,可以根据个人项目的实际需要来规划如何利用它来进行深入探索。以下是几个可能的方向: - 利用深度学习框架构建卷积神经网络(CNN),针对腺体轮廓识别任务开展实验; - 尝试迁移学习策略,将预训练好的ImageNet权重迁移到目标域上继续调优; - 探讨弱监督甚至无监督条件下实现高效精准预测的可能性; - 结合多模态特征融合技术改进现有解决方案的表现水平。 ```python import os from PIL import Image import numpy as np from sklearn.model_selection import train_test_split def load_glas_dataset(path_to_images, path_to_masks): images = [] masks = [] image_files = sorted([f for f in os.listdir(path_to_images)]) mask_files = sorted([f for f in os.listdir(path_to_masks)]) for img_file, msk_file in zip(image_files, mask_files): img_path = os.path.join(path_to_images, img_file) msk_path = os.path.join(path_to_masks, msk_file) img = np.array(Image.open(img_path)) msk = np.array(Image.open(msk_path)) images.append(img) masks.append(msk) X_train, X_val, y_train, y_val = train_test_split(images, masks, test_size=0.2, random_state=42) return np.array(X_train), np.array(y_train), np.array(X_val), np.array(y_val) path_to_images = 'path/to/glas/images' path_to_masks = 'path/to/glas/masks' X_train, y_train, X_val, y_val = load_glas_dataset(path_to_images, path_to_masks) print(f'Training set shape: {X_train.shape}') print(f'Validation set shape: {X_val.shape}') ```
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值