【2019牛客暑期多校训练营 第八场 E题】【Explorer】【离散化+线段树+分治】

题目链接:
https://ac.nowcoder.com/acm/contest/888/E
题意:
现在有n个节点,m条边,对于每一条边 ( u , v , l , r ) (u,v,l,r) (u,v,l,r),意为从 u u u v v v只能由size为 [ l , r ] [l,r] [l,r]的人才能通过。现在问有几种合法的size能从点 1 1 1到点 n n n
题解:
这里是使用了分治的思想(有点没懂,得去补补了)
建一个表示size的线段树,将路径 ( u , v ) (u,v) (u,v)存入对应的线段树节点 ( l , r ) (l,r) (l,r)
由于size范围很大,这里需要离散化(和第七场E题一样的套路)。
然后从树的根节点往下dfs,每次将路径用并查集按秩合并(按秩合并是并查集的一种优化合并方法,注意这里不能用路径压缩,因为我们还是要回溯的),当到达根节点的时候,询问一下点1和点n是否在同一个集中,如果在说明当前的这个size能够连同1到n

代码:

#include<bits/stdc++.h>
#define INF 0x3f3f3f3f
#define lc u<<1
#define rc u<<1|1
#define m (l+r)>>1
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> pii;
const int MAX = 1e5 + 10;

struct node {
	int u, v, l, r;
}a[MAX];

int N, M, ans;
int tot, mp[MAX << 1];
int pre[MAX], rk[MAX];

vector<pii> t[MAX << 3];
vector<int> merged[MAX << 3];//记录节点i被合并的点

int pos(int x) { return lower_bound(mp + 1, mp + 1 + tot, x) - mp; }//返回离散化后的数值

void insert(int u, int l, int r, int ql, int qr, int from, int to) {//点路径插入对应点
	if (ql <= l && r <= qr) {
		t[u].emplace_back(from, to);
		return;
	}
	if (ql < m)insert(lc, l, m, ql, qr, from, to);
	if (qr > m)insert(rc, m, r, ql, qr, from, to);
}

int find(int x) { return x == pre[x] ? x : find(pre[x]); }

void merge(int u, int x, int y) {//按秩合并
	x = find(x);
	y = find(y);
	if (x == y)return;
	if (rk[x] < rk[y])swap(x, y);
	pre[y] = x;
	if (rk[x] == rk[y])rk[x]++;
	merged[u].push_back(y);
}

void update(int u) {//全部合并 
	for (auto & i : t[u])
		merge(u, i.first, i.second);
}

void cancel(int u) {//还原 
	for (auto & i : merged[u])
		pre[i] = i;
}

void dfs(int u, int l, int r) {
	update(u);
	if (l == r - 1) {
		if (find(1) == find(N))//位于同一个集中
			ans += mp[r] - mp[l];//说明当前size能够连通
		cancel(u);//将并查集还原
		return;
	}
	dfs(lc, l, m);
	dfs(rc, m, r);
	cancel(u);//并查集还原
}

int main() {
	tot = ans = 0;
	scanf("%d%d", &N, &M);
	for (int i = 1; i <= N; i++)pre[i] = i;
	for (int i = 1; i <= M; i++) {
		scanf("%d%d%d%d", &a[i].u, &a[i].v, &a[i].l, &a[i].r);
		mp[++tot] = a[i].l;
		mp[++tot] = a[i].r + 1;
	}
	sort(mp + 1, mp + 1 + tot);
	tot = unique(mp + 1, mp + 1 + tot) - mp - 1;
	for (int i = 1; i <= M; i++)
		insert(1, 1, tot + 1, pos(a[i].l), pos(a[i].r + 1), a[i].u, a[i].v);//将路径插入对应的节点
	dfs(1, 1, tot + 1);//dfs查询
	printf("%d\n", ans);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值