lena图像,直方图均衡

%对lena图像进行直方图均衡,给出处理前后的图像及其直方图
%用3*3的均值滤波器处理lena图像
%对lena图像施加(Pa=Pb=0.1)的椒盐噪声,然后采用3*3中值滤波器处理
%用Soble算子对lena图像进行锐化处理
%对lena图像进行直方图均衡,给出处理前后的图像及其直方图
clear all;close all;
image=imread('D:\lena.bmp');

image_d=double(image);
srcprobability=zeros(1,256);
[M,N]=size(image);
for m=1:M
    for n=1:N
        srcprobability(image_d(m,n)+1)=srcprobability(image_d(m,n)+1)+1;
    end
end
srcprobability=srcprobability./(M*N);

%进行直方图均衡化处理
Sk=zeros(1,256);
for i=1:256
    if i==1
        Sk(1)=srcprobability(1);
    else
        Sk(i)=Sk(i-1)+srcprobability(i);
    end
end

for i=1:256
    Sk(i)=round(Sk(i)*255);
end

%将直方图均衡化的结果写到目标图像
image_hist=zeros(M,N);
for m=1:M
    for n=1:N
        image_hist(m,n)=Sk(image_d(m,n));
    end
end

drcprobability=zeros(1,256);
for m=1:M
    for n=1:N
        drcprobability(image_hist(m,n)+1)=drcprobability(image_hist(m,n)+1)+1;
    end
end

drcprobability=drcprobability./(M*N);
clear Sk;

figure(1)
subplot(1,2,1);
bar(srcprobability);
title('输入图像的直方图');
subplot(1,2,2);
bar(drcprobability);
title('进行直方图均衡化后的直方图');

figure(2)
imshow(image);
title('原始lena图像');

figure(3)
image_hist=uint8(image_hist);
imshow(image_hist);
title('直方图均衡化处理后的lena图像');

%用3*3的均值滤波器处理lena图像
image_ave=zeros(M,N);
%边缘值不处理
for i=1:N
    image_ave(1,i)=image_d(1,i);
    image_ave(M,i)=image_d(M,i);
end
for i=2:M-1
    image_ave(i,1)=image_d(i,1);
    image_ave(i,N)=image_d(i,N);
end
for m=2:M-1
    for n=2:N-1
        template=image_d(m-1:m+1,n-1:n+1);
        template=reshape(template,1,9);
        image_ave(m,n)=sum(template)./9;
    end
end

figure(4)
image_ave=uint8(image_ave);
imshow(image_ave);
title('用3*3的均值滤波器对lena图像进行处理后的结果');

%对lena图像施加(Pa=Pb=0.1)的椒盐噪声,然后采用3*3中值滤波器处理
image_noise=imnoise(image,'salt & pepper',0.1); %加入椒盐躁声
image_noise_d=double(image_noise);
image_mid=zeros(M,N);
%边缘值不处理
for i=1:N
    image_mid(1,i)=image_noise_d(1,i);
    image_mid(M,i)=image_noise_d(M,i);
end
for i=2:M-1
    image_mid(i,1)=image_noise_d(i,1);
    image_mid(i,N)=image_noise_d(i,N);
end
for m=2:M-1
    for n=2:N-1
        template=image_noise_d(m-1:m+1,n-1:n+1);
        template=reshape(template,1,9);
        image_mid(m,n)=median(template);
    end
end

figure(5)
clear image_noise_d;
imshow(image_noise);
title('施加(Pa=Pb=0.1)的椒盐噪声的lena图像');

figure(6)
image_mid=uint8(image_mid);
imshow(image_mid);
title('用3*3的中值滤波器对加(Pa=Pb=0.1)的椒盐噪lena图像进行处理后的结果');       

%用Soble算子对lena图像进行锐化处理
image_soble=zeros(M,N);
%边缘值不处理
for i=1:N
    image_soble(1,i)=image_d(1,i);
    image_soble(M,i)=image_d(M,i);
end
for i=2:M-1
    image_soble(i,1)=image_d(i,1);
    image_soble(i,N)=image_d(i,N);
end
for m=2:M-1
    for n=2:N-1
        template=image_d(m-1:m+1,n-1:n+1);
        template=reshape(template,1,9);
        Gx=abs(template(7)+2*template(8)+template(9)-template(1)-2*template(2)-template(3));
        Gy=abs(template(3)+2*template(6)+template(9)-template(1)-2*template(4)-template(7));
        image_soble(m,n)=Gx+Gy;
    end
end

figure(7)
clear image_d;
image_soble=uint8(image_soble);
imshow(image_soble);
title('用Soble算子对lena图像进行锐化处理的结果');


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值