深度学习神经网络 卷积神经网络 第四节,构建测试程序

本文详细介绍了如何使用TensorFlow构建卷积神经网络(CNN)进行测试,包括计算图的创建、输入输出的设置、前向传播的定义以及准确率的计算。通过具体实例,展示了在MNIST数据集上实现CNN测试流程的方法,并讨论了高阶CNN的构建挑战。

测试程序也是很简单。

首先创建计算图:

with tf.Graph().as_default() as g:

计算图的输入和输出占位与之前反向传播的函数一样:

        x = tf.placeholder(tf.float32, [
            mnist.test.num_examples,
            mnist_lenet5_forward.IMAGE_SIZE,
            mnist_lenet5_forward.IMAGE_SIZE,
            mnist_lenet5_forward.NUM_CHANNELS])
        y_ = tf.placeholder(tf.float32, [None, mnist_lenet5_forward.OUTPUT_NODE])

要注意的是,构建测试图的时候,forward的第二个参数要设为FALSE,表示我们的计算图是用来测试的,所以不用dropout。

        y = mnist_lenet5_forward.forward(x, False, None)

后面的恢复过程和准确率计算也是几乎完全一样:

                    reshaped_x = np.reshape(mnist.test.images, (
                        mnist.test.num_examples,
                        mnist_lenet5_forward.IMAGE_SIZE,
                        mnist_lenet5_forward.IMAGE_SIZE,
                        mnist_lenet5_forward.NUM_CHANNELS))
                    accuracy_score = sess.run(accuracy,
                              feed_dict={x: reshaped_x, y_: mnist.test.labels})  # 计算出测试集上准确率

训练到50000次以上的时候,打印输出的结果表示准确率在百分之九十九左右。

卷积网络的初步构建的讲解到这里就完了。下面是关于更有挑战性的卷积神经网络的构建。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Dezeming

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值