目录
1.整型提升的意义
2.如何进行整体提升
3.算术转换
4.整型数据的存储
1.整型提升的意义:
表达式的整型运算要在CPU的相应运算器件内执行,CPU内整型运算器(ALU)的操作数的字节长度一般就是int的字节长度,同时也是CPU的通用寄存器的长度。
因此,即使两个char类型的相加,在CPU执行时实际上也要先转换为CPU内整型操作数的标准长度。
通用CPU(general-purpose CPU)是难以直接实现两个8比特字节直接相加运算(虽然机器指令中可能有这种字节相加指令)。所以,表达式中各种长度可能小于int长度的整型值,都必须先转换为int或unsigned int,然后才能送入CPU去执行运算。
2.如何进行整体提升:
整形提升是按照变量的数据类型的符号位来提升的。(写出的是数字二进制的原码,在内存中存放的是二进制的补码)
原码——>符号位不变,其他位取反得到反码,反码+1得到补码。
正数的原码,补码,反码相同。
//负数的整形提升
char c1 = -1;
变量c1的二进制位(补码)中只有8个比特位:
1111111
因为 char 为有符号的 char
所以整形提升的时候,高位补充符号位,即为1
提升之后的结果是:
11111111111111111111111111111111
//正数的整形提升
char c2 = 1;
变量c2的二进制位(补码)中只有8个比特位:
00000001
因为 char 为有符号的 char
所以整形提升的时候,高位补充符号位,即为0
提升之后的结果是:
00000000000000000000000000000001
//无符号整形提升,高位补0
3.算术转换
如果某个操作符的各个操作数属于不同的类型,那么除非其中一个操作数的转换为另一个操作数的类型,否则操作就无法进行。下面的层次体系称为
寻常算术转换。
如果某个操作数的类型在上面这个列表中排名较低,那么首先要转换为另外一个操作数的类型后执行运 算。
警告:
但是算术转换要合理,要不然会有一些潜在的问题。
long double
double
float
unsigned long int
long int
unsigned int
4.整型数据的存储
例:
注: 补码以%d的形式打印看原码
注:补码以%u的形式看补码