项目背景
要实现菜品推荐,首先考虑的就是建立推荐系统。与搜索引擎不同,推荐系统并不需要用户提供明确的需求,而是通过分析用户的历史行为,主动为用户推荐能够满足他们兴趣和需求的信息。依据后台网站的海量数据,研究用户的兴趣偏好,分析用户的需求和行为,发现用户的兴趣点。尤其是将长尾产品(指餐饮外卖平台中热销菜品以外的菜品,它们总体数量大,但单位销量少)准确地推荐给所需要的用户。
因此,根据近期用户对菜品的评分历史数据,建立菜品推荐模型,向用户们提供菜品推荐,从而满足用户们的个性化或差异性的口味,提高餐饮外卖平台的利润。
项目目标
通过对用户对菜品的评分历史数据进行存储与分析挖掘,建立推荐模型,实现向用户们提供菜品推荐。项目技术目标如下。
1读取用户评分历史数据
2分析用户评分历史数据的记录数、分布情况和数据重复情况
3处理用户评分历史数据中的重复评分数据
4对处理后的用户数据与菜品数据进行数据编码
5将数据编码之后的数据划分为训练集、验证集和测试集
6分别构建基于物品、基于用户、基于Spark ALS的推荐模型实现用户与菜品之间的推荐
说明以上技术目标仅供参考,具体分析方向可自定,需结合实际需求。
项目实战:【热门电影智能推荐】
根据实战项目要求,完成一个跟师傅带练类似项目的实现。
另设有答疑交流讨论群,在技能培训与项目实战期间助教全程辅助教学,为学员提供全方位课后辅导线上答疑服务。
项目流程
建群交流——视频学习——师傅带练——项目实操——学习交流——项目考核——颁发证书