[译]OpenGL投影矩阵

62 篇文章 0 订阅
21 篇文章 1 订阅

这是关于OpenGL投影矩阵的一篇译文,原文在这里.

概览(Overview)

电脑显示屏是一个2D平面,为了能够在这个2D平面上显示OpenGL渲染的3D场景,我们必须将3D场景当作2D图像投影到这个2D平面(计算机屏幕)上.GL_PROJECTION 矩阵就是用来做这种投影变换的.首先,该矩阵将所有观察空间的顶点坐标变换到裁剪空间,接着,将变换后的顶点坐标(即裁剪坐标)的每个分量 ( x , y , z , w ) (x,y,z,w) (x,y,z,w)除以坐标的 w w w 分量,使其变换为标准化设备坐标(NDC).

在这里插入图片描述

这里我们需要注意的一点就是 : GL_PROJECTION 矩阵同时整合了裁剪(视锥体剔除)和标准化设备坐标(NDC)变换的功能(译注:这里不是指 GL_PROJECTION 矩阵本身整合了这些功能,而是指 OpenGL 的 GL_PROJECTION 矩阵模式整合了这些功能).接下来的内容就是描述如何从6个边界参数(left, right, bottom, top, near 和 far) 构造出这个投影矩阵.

值得一提的是,视锥体剔除是在裁剪空间进行的(NDC变换之前) : 裁剪坐标中的 x c x_c xc, y c y_c yc z c z_c zc 分量会分别与 w c w_c wc 分量进行比较,如果其中任一分量小于 − w c -w_c wc,或者大于 w c w_c wc,则该坐标对应的顶点就会被丢弃(即发生了裁剪).

接着, 如果发生了裁剪, OpenGL 会重新构建发生裁剪的多边形边缘.

透视投影

在透视投影中,视锥体(观察空间)中的一个3D坐标点会被映射到一个立方体中(NDC);其中 x x x 坐标范围会从 [ l , r ] [l, r] [l,r] 映射到 [ − 1 , 1 ] [-1, 1] [1,1], y y y 坐标范围会从 [ b , t ] [b, t] [b,t] 映射到 [ − 1 , 1 ] [-1, 1] [1,1], z z z 坐标范围会从 [ − n , − f ] [-n, -f] [n,f] 映射到 [ − 1 , 1 ] [-1, 1] [1,1].
在这里插入图片描述

这里需要注意的是,观察空间是在右手坐标系下(OpenGL 使用右手坐标系)定义的,但是 NDC 却是在左手坐标系下定义的.换句话说就是,观察空间中的摄像机是指向 -Z 轴的,但是在 NDC 中,摄像机指向的却是 +Z 轴(译注:NDC变换会改变左右手坐标系).由于 glFrustum() 函数只接受正的近/远裁剪面距离,所以我们需要在构造 GL_PROJECTION 矩阵的过程中将近/远裁剪面距离变成负数(译注:因为在观察空间中,摄像机是指向 -Z 轴的).

在 OpenGL 中,观察空间中3D坐标点是投影到近裁剪面(即投影面)上的.下面的示意图展示了一个在观察空间中的坐标点 ( x e , y e , z e ) (x_e, y_e, z_e) (xe,ye,ze),是如何投影到近裁剪面坐标点 ( x p , y p , z p ) (x_p, y_p, z_p) (xp,yp,zp) 上的.

视锥体顶部视图
视锥体侧面视图
从视锥体的顶部视图可以看到, x e x_e xe(观察空间中的 x x x 坐标)的投影坐标 x p x_p xp 可以使用相似三角形对应边长成比例来求解:

在这里插入图片描述

从视锥体的侧面视图来看, y p y_p yp 也可以使用类似的方式求解:

在这里插入图片描述

注意到 x p x_p xp y p y_p yp 的数值都是依赖于 z e z_e ze 的,并且两者的数值大小都反比与 − z e -z_e ze(这两个数值的求解都除以了 − z e -z_e ze).这是我们构建 GL_PROJECTION 矩阵的第一条线索.在观察空间中的坐标经过 GL_PROJECTION 矩阵变换之后,得到的裁剪坐标还是一个齐次坐标,需要将坐标的各个分量除以坐标的 w w w 分量才能将其变换为标准化设备坐标(NDC).(更多细节可以看这里)

在这里插入图片描述
在这里插入图片描述
所以,我们可以将裁减坐标的 w w w 分量设置为 − z e -z_e ze,基于此,GL_PROJECTION 矩阵的第四行便可以确定了,应为 ( 0 , 0 , − 1 , 0 ) (0, 0, -1, 0) (0,0,1,0).

在这里插入图片描述

接下来,我们要将 x p x_p xp y p y_p yp 线性映射到 NDC 下的 x n x_n xn y n y_n yn, 即 [ l , r ] [l, r] [l,r] [ − 1 , 1 ] [-1, 1] [1,1] , [ b , t ] [b, t] [b,t] [ − 1 , 1 ] [-1, 1] [1,1].

在这里插入图片描述

在这里插入图片描述

然后,我们将 x p x_p xp y p y_p yp 的表达式代入上面的等式.

在这里插入图片描述
在这里插入图片描述
由于要进行透视除法的关系 ( x c / w c , y c / w c ) (x_c/w_c, y_c/w_c) (xc/wc,yc/wc),我们将等式都调整成了除以 − z e -z_e ze 的形式.我们先前已经设置了 wc 为 − z e -z_e ze,所以等式括号里项即是裁剪坐标 x c x_c xc y c y_c yc.

通过这些等式,我们就可以确定 GL_PROJECTION 矩阵的第一行和第二行了:

在这里插入图片描述

现在,我们只需要求解出 GL_PROJECTION 矩阵的第三行便可以了,不过计算 z n z_n zn 和之前计算的 x n x_n xn y n y_n yn 有些不同,因为观察空间中的 z e z_e ze 总是会被投影到近裁剪面上(数值为 − n -n n),而我们需要的是唯一的 z z z 值以进行裁剪和深度检测,另外的,我们也应该能够"反投影"(unproject,投影的逆变换) z n z_n zn.由于我们知道 z z z 坐标并不依赖与 x x x 坐标和 y y y 坐标,所以我们可以借助 w w w 分量来求解 z n z_n zn z e z_e ze 的关系,计算方法如下:

在这里插入图片描述

观察空间中, w e w_e we 等于 1 1 1,所以上面的等式可以化简为:

在这里插入图片描述

为了计算 A A A B B B 这两个参数,我们可以利用 ( z e , z n ) (z_e, z_n) (ze,zn) 的两个条件关系: ( − n , − 1 ) (-n, -1) (n,1) ( − f , 1 ) (-f, 1) (f,1)(译注:即 z e = − n z_e = -n ze=n 时, z n = − 1 z_n = -1 zn=1; z e = − f z_e = -f ze=f 时, z n = 1 z_n = 1 zn=1),代入上面的等式,我们有:

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

通过上面的计算,我们得到了系数 A A A B B B 的表达式,于是 z e z_e ze z n z_n zn 的关系式变为:

在这里插入图片描述

最终,我们得到了完整的 GL_PROJECTION 矩阵:

在这里插入图片描述

上面的投影矩阵对应于一般的视锥体投影,如果视锥体是上下左右对称的话(即 r = − l , t = − b r = -l, t = -b r=l,t=b),则上面的投影矩阵可以做如下简化:

在这里插入图片描述

在我们继续讲解之前,我们再来观察一下 z e z_e ze z n z_n zn 的关系,也就是上面的等式 ( 3 ) (3) (3).注意到该等式是个非线性的有理函数,当 z e z_e ze 靠近近裁剪面的时候,对应 z n z_n zn 的精度会比较高,当 z e z_e ze 靠近远裁剪面的时候,对应 z n z_n zn 的精度则比较低.于是,当 [ − n , − f ] [-n, -f] [n,f]的范围变大的时候,就会发生深度缓冲的精度问题(z-fighting),因为此时靠近远裁剪面的 z e z_e ze 的微小变化并不会影响 z n z_n zn 的数值(译注:数学角度讲, z e z_e ze 的任何变化其实都会影响到 z n z_n zn 的数值,这里说不会影响 z n z_n zn 的数值是从计算机中数值精度表示有限的角度来讲的),所以我们应该尽量缩短 n n n f f f 之间的距离,以最小化上述的深度缓冲精度问题.

在这里插入图片描述

正交投影

为正交投影构建一个 GL_PROJECTION 矩阵比上面说的透视投影要简单多了.

在这里插入图片描述

所有观察空间的 x e x_e xe, y e y_e ye z e z_e ze 分量都被线性的映射到 NDC 中,我们要做的就是将长方体(观察空间)缩放成一个立方体(NDC),然后将其移动到原点位置.我们马上来算一下 GL_PROJECTION 矩阵的各个元素:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

由于在正交投影中,我们不需要 w w w 分量的参与,所以 GL_PROJECTION 矩阵的第四行设置为了 ( 0 , 0 , 0 , 1 ) (0, 0, 0, 1) (0,0,0,1).最终的 GL_PROJECTION 矩阵表示如下:

在这里插入图片描述

同透视投影一样,如果视锥体是上下左右对称的话(即 r = − l , t = − b r = -l, t = -b r=l,t=b),上面的 GL_PROJECTION 矩阵可以简化为:

在这里插入图片描述

  • 0
    点赞
  • 5
    收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:编程工作室 设计师:CSDN官方博客 返回首页
评论
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值