什么样的矢量偏微分方程可以求解呢?
亥姆霍兹定理就是用来解决这个问题的。该定理表示:如果一个矢量场的散度、旋度和边界条件确定的话,那么就可以通过散度、旋度和边界条件来求解出该矢量场,而且该解唯一。
求解矢量场的思路是:
- 将矢量场表示为δ(r)\delta(r)δ(r)函数与矢量的空间卷积。
- 由于δ(r)\delta(r)δ(r)函数为标量函数−14π1∣r∣-\frac{1}{4\pi}\frac{1}{|r|}−4π1∣r∣1的拉普拉斯运算δ(r)=−14π∇21∣r∣\delta(r)=-\frac{1}{4\pi}\nabla^2 \frac{1}{|r|}δ(r)=−4π1∇2∣r∣1,因此矢量场就与散度和旋度产生了关系。
- 通过矢量三重积公式∇2A=∇×(∇×A)−∇(∇⋅A)\nabla^2 A =\nabla \times(\nabla \times A)-\nabla(\nabla \cdot A)∇2A=∇×(∇×A)−∇(∇⋅A),从而可以将矢量场表示为一无散场∇×A\nabla \times A∇×A的旋度与一标量场∇⋅A\nabla \cdot A∇⋅A的梯度之差。
在网上看了百度文库中的《亥姆霍兹定理的证明》【1】、百度文库中《格林公式证明亥姆霍兹定理》【2】、知乎中的《亥姆霍兹定理》【3】。文献【1】中的证明最简洁清晰;【2】中竟然对矢量函数应用格林定理,又对标量函数应用矢量三重积公式,我没明白是什么技巧,而且很明显多处公式错误,真有点怀疑作者和编辑;【3】中也存在对矢量函数应用格林定理的毛病(对公式4中最后一项就是用格林公式展开的)。
下面把自己对【1】的理解重新整理一下,更改了其中部分错误,优化局部的证明思路!
一、 δ(r)\delta(r)δ(r)函数和空间卷积
我认为这是亥姆霍兹定理的基点,类似信号系统中的冲激响应函数。有了该函数,矢量函数就可以表示为自己与δ(r)\delta(r)δ(r)的空间卷积了,即Fˉ(r)=∭VFˉ(r′)δ(r−r′)dV′\bar{F}(r)=\iiint_V \bar{F}(r^\prime) \delta(r-r^\prime)dV^\primeFˉ(r)=∭VFˉ(r′)δ(r−r′)dV′。
由于δ(r)=−14π∇2(1∣r∣)\delta(r)=-\frac{1}{4\pi} \nabla^2(\frac{1}{|r|})δ(r)=−4π1∇2(∣r∣1),所以,
Fˉ(r)=−14π∭VFˉ(r′)∇2(1∣r−r′∣)dV′\bar{F}(r)=-\frac{1}{4\pi} \iiint_V \bar{F}(r^\prime) \nabla^2(\frac{1}{|r-r\prime|})dV^\primeFˉ(r)=−4π1∭VFˉ(r′)∇2(∣r−r′∣1)dV′ (1)
基于该卷积中的拉普拉斯算子,从而引导出来了积分、散度和旋度等对象,从而得到了亥姆霍兹定理:矢量场可以表示为旋度和梯度。
二、矢量三重积
1.拉普拉斯算子移到积分外
−14π∭VFˉ(r′)∇2(1∣r−r′∣)dV′=−14π∇2∭VFˉ(r′)(1∣r−r′∣)dV′-\frac{1}{4\pi} \iiint_V \bar{F}(r^\prime) \nabla^2(\frac{1}{|r-r\prime|})dV^\prime = -\frac{1}{4\pi}\nabla^2 \iiint_V \bar{F}(r^\prime) (\frac{1}{|r-r\prime|})dV^\prime−4π1∭VFˉ(r′)∇2(∣r−r′∣1)dV′=−4π1∇2∭VFˉ(r′)(∣r−r′∣1)dV′(2)
上式关键难点是:式左边是拉普拉斯运算是对标量,式右边是拉普拉斯运算是对矢量。为什么相等?
首先拉普拉斯算子是对 r求导,而不是对r’求导;其次,上式是一个矢量相等公式,相当于三个标量等式。写详细一些,对上式右边应用拉普拉斯算子的定义公式(∇2A)x=∂2Ax∂x2+∂2Ax∂y2+∂2Ax∂z2(\nabla^2A)_x=\frac{\partial^2A_x}{\partial x^2}+\frac{\partial^2A_x}{\partial y^2}+\frac{\partial^2A_x}{\partial z^2}(∇2A)x=∂x2∂2Ax+∂y2∂2Ax+∂z2∂2Ax展开即可得证:
−14π∇2∭VFˉ(r′)(1∣r−r′∣)dV′=−14π∭V{ex(∂2∂x2+∂2∂y2+∂2∂z2)[Fˉx′(r′)(1∣r−r′∣)]+ey(∂2∂x2+∂2∂y2+∂2∂z2)[Fˉy′(r′)(1∣r−r′∣)]+ez(∂2∂x2+∂2∂y2+∂2∂z2)[Fˉz′(r′)(1∣r−r′∣)]}dV′=−14π∭VFˉ(r′)∇2(1∣r−r′∣)dV′-\frac{1}{4\pi}\nabla^2 \iiint_V \bar{F}(r^\prime) (\frac{1}{|r-r\prime|})dV^\prime = \\
-\frac{1}{4\pi}\iiint_V \{ e_{x} (\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}+\frac{\partial^2}{\partial z^2})[\bar{F}_{x^\prime}(r^\prime) (\frac{1}{|r-r\prime|})] \\+ e_{y} (\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}+\frac{\partial^2}{\partial z^2})[\bar{F}_{y^\prime}(r^\prime) (\frac{1}{|r-r\prime|})] \\+ e_{z} (\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}+\frac{\partial^2}{\partial z^2})[\bar{F}_{z^\prime}(r^\prime) (\frac{1}{|r-r\prime|})] \}dV^\prime \\ = -\frac{1}{4\pi} \iiint_V \bar{F}(r^\prime) \nabla^2(\frac{1}{|r-r\prime|})dV^\prime−4π1∇2∭VFˉ(r′)(∣r−r′∣1)dV′=−4π1∭V{ex(∂x2∂2+∂y2∂2+∂z2∂2)[Fˉx′(r′)(∣r−r′∣1)]+ey(∂x2∂2+∂y2∂2+∂z2∂2)[Fˉy′(r′)(∣r−r′∣1)]+ez(∂x2∂2+∂y2∂2+∂z2∂2)[Fˉz′(r′)(∣r−r′∣1)]}dV′=−4π1∭VFˉ(r′)∇2(∣r−r′∣1)dV′(3)
2. 将拉普拉斯运算转换为梯度偏导和矢量三重积之差
∇2A=∇(∇⋅A)−∇×(∇×A)\nabla^2A = \nabla (\nabla \cdot A)- \nabla \times(\nabla \times A)∇2A=∇(∇⋅A)−∇×(∇×A)
上式为矢量三重积公式,即可以得到向量场的求解公式:
Fˉ(r)=−∇Φ(r)+∇×Aˉ(r)\bar F(r) =-\nabla \Phi(r)+\nabla \times \bar A(r)Fˉ(r)=−∇Φ(r)+∇×Aˉ(r)(4)
其中:
Φ(r)=∇⋅(14π∭VFˉ(r′)(1∣r−r′∣)dV′)\Phi(r) = \nabla \cdot (\frac{1}{4\pi} \iiint_V \bar{F}(r^\prime) (\frac{1}{|r-r\prime|})dV^\prime )Φ(r)=∇⋅(4π1∭VFˉ(r′)(∣r−r′∣1)dV′)(5)
Aˉ(r)=∇×(14π∭VFˉ(r′)(1∣r−r′∣)dV′)\bar A(r) = \nabla \times (\frac{1}{4\pi} \iiint_V \bar{F}(r^\prime) (\frac{1}{|r-r\prime|})dV^\prime )Aˉ(r)=∇×(4π1∭VFˉ(r′)(∣r−r′∣1)dV′)(6)
3. Φ(r)\Phi(r)Φ(r)的进一步推导
应用等式:∇⋅(Fˉ(r′)δ(r))=Fˉ(r′)⋅∇δ(r)\nabla \cdot (\bar F(r') \delta(r))= \bar F(r') \cdot \nabla \delta(r)∇⋅(Fˉ(r′)δ(r))=Fˉ(r′)⋅∇δ(r) 以及等式:∇(1∣r−r′∣)=−∇′(1∣r−r′∣)\nabla(\frac{1}{|r-r'|})=-\nabla' (\frac{1}{|r-r'|})∇(∣r−r′∣1)=−∇′(∣r−r′∣1) ,可以得到:
Φ(r)=∇⋅(14π∭VFˉ(r′)(1∣r−r′∣)dV′)=14π∭V∇⋅Fˉ(r′)∣r−r′∣dV′−14π∬S′Fˉ(r′)⋅dS′∣r−r′∣\Phi(r) = \nabla \cdot (\frac{1}{4\pi} \iiint_V \bar{F}(r^\prime) (\frac{1}{|r-r\prime|})dV^\prime ) =\frac{1}{4\pi} \iiint_V \frac{\nabla \cdot \bar{F}(r') }{|r-r'|}dV' - \frac{1}{4\pi} \iint_{S'} \frac{\bar{F}(r') \cdot dS' }{|r-r'|}Φ(r)=∇⋅(4π1∭VFˉ(r′)(∣r−r′∣1)dV′)=4π1∭V∣r−r′∣∇⋅Fˉ(r′)dV′−4π1∬S′∣r−r′∣Fˉ(r′)⋅dS′
(7)
4. Aˉ(r)\bar A(r)Aˉ(r) 的进一步推导
这个推导难度较大。
首先要证明:∇×(Fˉ(r′)∣r−r′∣)=−Fˉ(r′)×∇(1∣r−r′∣)\nabla \times (\frac{\bar F(r')}{|r-r'|})=-\bar F(r') \times \nabla (\frac{1}{|r-r'|})∇×(∣r−r′∣Fˉ(r′))=−Fˉ(r′)×∇(∣r−r′∣1) (8)
由于 ∇×(Fˉ(r′)∣r−r′∣)=∇×Fˉ(r′)∣r−r′∣−Fˉ(r′)×∇(1∣r−r′∣)\nabla \times (\frac{\bar F(r')}{|r-r'|})= \frac{\nabla \times \bar F(r')}{|r-r'|} - \bar F(r') \times \nabla(\frac{1}{|r-r'|})∇×(∣r−r′∣Fˉ(r′))=∣r−r′∣∇×Fˉ(r′)−Fˉ(r′)×∇(∣r−r′∣1) ,因为 ∇×Fˉ(r′)=0\nabla \times \bar F(r') = 0∇×Fˉ(r′)=0,故上式成立!
另外一种证明方式是将叉乘写成行列式形式,求偏导时 可以视为常量,因此下面推导成立[3]:
∣exeyez∂∂x∂∂y∂∂zFˉx′(r′)∣r−r′∣Fˉy′(r′)∣r−r′∣Fˉz′(r′)∣r−r′∣∣=∣exeyez∂∂x1∣r−r′∣∂∂y1∣r−r′∣∂∂z1∣r−r′∣Fˉx′Fˉy′(r′)Fˉz′(r′)∣=−∣exeyezFˉx′Fˉy′(r′)Fˉz′(r′)∂∂x1∣r−r′∣∂∂y1∣r−r′∣∂∂z1∣r−r′∣∣\left| \begin{matrix} e_x & e_y & e_z\\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} &\frac{\partial}{\partial z}\\ \frac{\bar F_{x'}(r')}{|r-r'|} & \frac{\bar F_{y'}(r')}{|r-r'|} &\frac{\bar F_{z'}(r')}{|r-r'|} \\ \end{matrix} \right| = \left| \begin{matrix} e_x & e_y & e_z\\ \frac{\partial}{\partial x}\frac{1}{|r-r'|} & \frac{\partial}{\partial y}\frac{1}{|r-r'|} &\frac{\partial}{\partial z}\frac{1}{|r-r'|} \\ \bar F_{x'} & \bar F_{y'}(r') &\bar F_{z'}(r') \\ \end{matrix} \right| =- \left| \begin{matrix} e_x & e_y & e_z\\ \bar F_{x'} & \bar F_{y'}(r') &\bar F_{z'}(r') \\ \frac{\partial}{\partial x}\frac{1}{|r-r'|} & \frac{\partial}{\partial y}\frac{1}{|r-r'|} &\frac{\partial}{\partial z}\frac{1}{|r-r'|} \\ \end{matrix} \right|∣∣ex∂x∂∣r−r′∣Fˉx′(r′)ey∂y∂∣r−r′∣Fˉy′(r′)ez∂z∂∣r−r′∣Fˉz′(r′)∣∣=∣∣ex∂x∂∣r−r′∣1Fˉx′ey∂y∂∣r−r′∣1Fˉy′(r′)ez∂z∂∣r−r′∣1Fˉz′(r′)∣∣=−∣∣exFˉx′∂x∂∣r−r′∣1eyFˉy′(r′)∂y∂∣r−r′∣1ezFˉz′(r′)∂z∂∣r−r′∣1∣∣
其次要证明:
∭V∇×Fˉ(r′)dV′=∬SdS′ˉ×Fˉ(r′)=−∬SFˉ(r′)×dS′ˉ\iiint_V \nabla \times \bar F(r') dV' = \iint_S \bar{dS'} \times \bar F(r') =-\iint_S \bar F(r') \times \bar{dS'}∭V∇×Fˉ(r′)dV′=∬SdS′ˉ×Fˉ(r′)=−∬SFˉ(r′)×dS′ˉ(9)
将等式左边的叉乘进行行列式展开,并且由于∭V∂F∂xdxdydz=∬SFdydz\iiint_V \frac{\partial F} {\partial x} dxdydz =\iint_S Fdydz∭V∂x∂Fdxdydz=∬SFdydz,因此可推导得出下式成立:
∇×Fˉ(r′)dV′=∣exeyez∂∂x′∂∂y′∂∂z′Fˉx(r′)dV′Fˉy(r′)dV′Fˉz(r′)dV′∣=∣exeyez∂∂x′dV′∂∂y′dV′∂∂z′dV′Fˉx(r′)Fˉy(r′)Fˉz(r′)∣=∇dV′×Fˉ(r′)=dS′ˉ×Fˉ(r′)=−Fˉ(r′)×dS′ˉ\begin{align} \nabla \times \bar F(r') dV' &= \left| \begin{matrix} e_x & e_y & e_z\\ \frac{\partial}{\partial x'} & \frac{\partial}{\partial y'} &\frac{\partial}{\partial z'}\\ \bar F_{x}(r')dV' & \bar F_{y}(r')dV' &\bar F_{z}(r')dV' \\ \end{matrix} \right| \\ &= \left| \begin{matrix} e_x & e_y & e_z\\ \frac{\partial}{\partial x'}dV' & \frac{\partial}{\partial y'} dV'&\frac{\partial}{\partial z'}dV'\\ \bar F_{x}(r') & \bar F_{y}(r') &\bar F_{z}(r') \\ \end{matrix} \right| \\ &= \nabla dV' \times \bar F(r') \\ &= \bar{dS'} \times \bar F(r') \\ &= - \bar F(r') \times \bar{dS'} \\ \end{align}∇×Fˉ(r′)dV′=∣∣ex∂x′∂Fˉx(r′)dV′ey∂y′∂Fˉy(r′)dV′ez∂z′∂Fˉz(r′)dV′∣∣=∣∣ex∂x′∂dV′Fˉx(r′)ey∂y′∂dV′Fˉy(r′)ez∂z′∂dV′Fˉz(r′)∣∣=∇dV′×Fˉ(r′)=dS′ˉ×Fˉ(r′)=−Fˉ(r′)×dS′ˉ(10)
Aˉ(r)\bar A(r)Aˉ(r)进一步展开的推导如下:
Aˉ(r)=∇×(14π∭VFˉ(r′)(1∣r−r′∣)dV′)=14π∭V∇×(Fˉ(r′)∣r−r′∣)dV′=−14π∭VFˉ(r′)×∇(1∣r−r′∣)dV′=14π∭VFˉ(r′)×∇′(1∣r−r′∣)dV′=14π∭V(∇′×Fˉ(r′)∣r−r′∣−∇′×(Fˉ(r′)∣r−r′∣))dV′=14π∭V∇′×Fˉ(r′)∣r−r′∣dV′−14π∬SdS′ˉ×Fˉ(r′)∣r−r′∣\begin{align} \bar A(r) & = \nabla \times (\frac{1}{4\pi} \iiint_V \bar{F}(r^\prime) (\frac{1}{|r-r\prime|})dV^\prime ) \\ &=\frac{1}{4\pi} \iiint_V \nabla \times (\frac{\bar{F}(r')}{|r-r'|})dV' \\ &=-\frac{1}{4\pi} \iiint_V \bar{F}(r') \times\nabla (\frac{1}{|r-r'|})dV'\\ &=\frac{1}{4\pi} \iiint_V \bar{F}(r') \times\nabla ' (\frac{1}{|r-r'|})dV' \\ &=\frac{1}{4\pi} \iiint_V (\frac{\nabla ' \times\bar{F}(r')}{|r-r'|}-\nabla' \times (\frac{\bar{F}(r')}{|r-r'|}))dV' \\ &=\frac{1}{4\pi} \iiint_V \frac{\nabla ' \times\bar{F}(r')}{|r-r'|} dV' -\frac{1}{4\pi} \iint_S \frac{\bar{dS'} \times\bar{F}(r')}{|r-r'|} \end{align}Aˉ(r)=∇×(4π1∭VFˉ(r′)(∣r−r′∣1)dV′)=4π1∭V∇×(∣r−r′∣Fˉ(r′))dV′=−4π1∭VFˉ(r′)×∇(∣r−r′∣1)dV′=4π1∭VFˉ(r′)×∇′(∣r−r′∣1)dV′=4π1∭V(∣r−r′∣∇′×Fˉ(r′)−∇′×(∣r−r′∣Fˉ(r′)))dV′=4π1∭V∣r−r′∣∇′×Fˉ(r′)dV′−4π1∬S∣r−r′∣dS′ˉ×Fˉ(r′)(11)
三、矢量场唯一性定理证明
由上可知,矢量场可以通过其散度、旋度和边界S上约束来计算。进一步可以证明矢量的散度、旋度和边界条件确定的矢量场是唯一的。使用反证法,假设不唯一,则存在δFˉ=Fˉ1−Fˉ2\delta \bar F = \bar F_1 -\bar F_2δFˉ=Fˉ1−Fˉ2,则:
{∇⋅δFˉ=0∇×δFˉ=0\left \{ \begin{align} & \nabla \cdot \delta \bar F = 0 \\ & \nabla \times \delta \bar F =0 \\ \end{align} \right.{∇⋅δFˉ=0∇×δFˉ=0
并且在边界曲面S上法向分量或切向分量给定,则:
en⋅δFˉ=0,或en×δFˉ=0\begin{align} & e_n \cdot \delta \bar F = 0 ,或\\ & e_n \times \delta \bar F =0 \\ \end{align}en⋅δFˉ=0,或en×δFˉ=0,
假设 δFˉ=∇Φ\delta \bar F = \nabla \PhiδFˉ=∇Φ,即∇2Φ=0\nabla ^2 \Phi = 0∇2Φ=0。应用标量函数第一格林公式可得:
∭V(∣∇Φ∣2+Φ∇2Φ)dV′=∬SΦ∂Φ∂ndS′\iiint_V (|\nabla \Phi|^2 +\Phi \nabla ^2 \Phi)dV' = \iint_S \Phi \frac{\partial \Phi}{\partial n}dS'∭V(∣∇Φ∣2+Φ∇2Φ)dV′=∬SΦ∂n∂ΦdS′(12)
∭V(∣∇Φ∣2)dV′=∬SΦ∂Φ∂ndS′\iiint_V (|\nabla \Phi|^2 )dV' = \iint_S \Phi \frac{\partial \Phi}{\partial n}dS'∭V(∣∇Φ∣2)dV′=∬SΦ∂n∂ΦdS′(13)
如果en⋅δFˉ=0e_n \cdot \delta \bar F = 0en⋅δFˉ=0,即式(13)左边项为0,从而 δFˉ=0\delta \bar F =0δFˉ=0。
如果在边界面S上en×δFˉ=0e_n \times \delta \bar F = 0en×δFˉ=0,则在边界S上Φ\PhiΦ 为常数。结合散度定理:∬V∇2ΦdV′=∬S∇Φ⋅dS′ˉ=∬S∂Φ∂ndS′\iint_V \nabla ^2 \Phi dV' = \iint_S \nabla \Phi \cdot \bar {dS'} = \iint_S \frac{\partial \Phi}{\partial n}dS'∬V∇2ΦdV′=∬S∇Φ⋅dS′ˉ=∬S∂n∂ΦdS′ ,可做如下推导:
∬SΦ∂Φ∂ndS′=Φs∬S∂Φ∂ndS′=Φs∭V∇2ΦdV′=0\begin{align} \iint_S \Phi \frac{\partial \Phi}{\partial n}dS' &=\Phi_s \iint_S \frac{\partial \Phi}{\partial n}dS' \\ &=\Phi_s \iiint_V \nabla^2\Phi dV' \\ &=0 \end{align}∬SΦ∂n∂ΦdS′=Φs∬S∂n∂ΦdS′=Φs∭V∇2ΦdV′=0
补充证明:如果在边界面S上en×∇Φ=0e_n \times \nabla \Phi = 0en×∇Φ=0,则在边界S上Φ\PhiΦ为常数。
设边界曲面S的函数为:Ψ(x,y,z)=0\Psi(x,y,z)=0Ψ(x,y,z)=0 。
因曲面S上: en×∇Φ=0e_n \times\nabla \Phi = 0en×∇Φ=0,即∇Ψ∣∇Ψ∣×∇Φ=0\frac{\nabla \Psi}{|\nabla \Psi|}\times \nabla \Phi=0∣∇Ψ∣∇Ψ×∇Φ=0
所以, ∇Ψ×∇Φ=0\nabla \Psi \times \nabla \Phi =0∇Ψ×∇Φ=0
所以, ∇Ψ=k∇Φ\nabla \Psi = k \nabla \Phi∇Ψ=k∇Φ
所以曲面S上,Φ(x,y,z)=kΨ(x,y,z)+Constant=Constant\Phi(x,y,z) = k \Psi(x,y,z)+Constant = ConstantΦ(x,y,z)=kΨ(x,y,z)+Constant=Constant ,得证!