电磁场学中亥姆赫兹定理证明过程的理解

本文探讨了亥姆霍兹定理的应用,该定理表明一个矢量场可以通过其散度、旋度及边界条件唯一确定。文章详细介绍了通过矢量三重积公式将矢量场分解为梯度和旋度的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

什么样的矢量偏微分方程可以求解呢?
亥姆霍兹定理就是用来解决这个问题的。该定理表示:如果一个矢量场的散度、旋度和边界条件确定的话,那么就可以通过散度、旋度和边界条件来求解出该矢量场,而且该解唯一。
求解矢量场的思路是:

  1. 将矢量场表示为δ(r)\delta(r)δ(r)函数与矢量的空间卷积。
  2. 由于δ(r)\delta(r)δ(r)函数为标量函数−14π1∣r∣-\frac{1}{4\pi}\frac{1}{|r|}4π1r1的拉普拉斯运算δ(r)=−14π∇21∣r∣\delta(r)=-\frac{1}{4\pi}\nabla^2 \frac{1}{|r|}δ(r)=4π12r1,因此矢量场就与散度和旋度产生了关系。
  3. 通过矢量三重积公式∇2A=∇×(∇×A)−∇(∇⋅A)\nabla^2 A =\nabla \times(\nabla \times A)-\nabla(\nabla \cdot A)2A=×(×A)(A),从而可以将矢量场表示为一无散场∇×A\nabla \times A×A的旋度与一标量场∇⋅A\nabla \cdot AA的梯度之差。

在网上看了百度文库中的《亥姆霍兹定理的证明》【1】、百度文库中《格林公式证明亥姆霍兹定理》【2】、知乎中的《亥姆霍兹定理》【3】。文献【1】中的证明最简洁清晰;【2】中竟然对矢量函数应用格林定理,又对标量函数应用矢量三重积公式,我没明白是什么技巧,而且很明显多处公式错误,真有点怀疑作者和编辑;【3】中也存在对矢量函数应用格林定理的毛病(对公式4中最后一项就是用格林公式展开的)。
下面把自己对【1】的理解重新整理一下,更改了其中部分错误,优化局部的证明思路!

一、 δ(r)\delta(r)δ(r)函数和空间卷积

我认为这是亥姆霍兹定理的基点,类似信号系统中的冲激响应函数。有了该函数,矢量函数就可以表示为自己与δ(r)\delta(r)δ(r)的空间卷积了,即Fˉ(r)=∭VFˉ(r′)δ(r−r′)dV′\bar{F}(r)=\iiint_V \bar{F}(r^\prime) \delta(r-r^\prime)dV^\primeFˉ(r)=VFˉ(r)δ(rr)dV
由于δ(r)=−14π∇2(1∣r∣)\delta(r)=-\frac{1}{4\pi} \nabla^2(\frac{1}{|r|})δ(r)=4π12(r1),所以,
Fˉ(r)=−14π∭VFˉ(r′)∇2(1∣r−r′∣)dV′\bar{F}(r)=-\frac{1}{4\pi} \iiint_V \bar{F}(r^\prime) \nabla^2(\frac{1}{|r-r\prime|})dV^\primeFˉ(r)=4π1VFˉ(r)2(rr′∣1)dV (1)
基于该卷积中的拉普拉斯算子,从而引导出来了积分、散度和旋度等对象,从而得到了亥姆霍兹定理:矢量场可以表示为旋度和梯度。

二、矢量三重积

1.拉普拉斯算子移到积分外

−14π∭VFˉ(r′)∇2(1∣r−r′∣)dV′=−14π∇2∭VFˉ(r′)(1∣r−r′∣)dV′-\frac{1}{4\pi} \iiint_V \bar{F}(r^\prime) \nabla^2(\frac{1}{|r-r\prime|})dV^\prime = -\frac{1}{4\pi}\nabla^2 \iiint_V \bar{F}(r^\prime) (\frac{1}{|r-r\prime|})dV^\prime4π1VFˉ(r)2(rr′∣1)dV=4π12VFˉ(r)(rr′∣1)dV(2)
上式关键难点是:式左边是拉普拉斯运算是对标量,式右边是拉普拉斯运算是对矢量。为什么相等?
首先拉普拉斯算子是对 r求导,而不是对r’求导;其次,上式是一个矢量相等公式,相当于三个标量等式。写详细一些,对上式右边应用拉普拉斯算子的定义公式(∇2A)x=∂2Ax∂x2+∂2Ax∂y2+∂2Ax∂z2(\nabla^2A)_x=\frac{\partial^2A_x}{\partial x^2}+\frac{\partial^2A_x}{\partial y^2}+\frac{\partial^2A_x}{\partial z^2}(2A)x=x22Ax+y22Ax+z22Ax展开即可得证:
−14π∇2∭VFˉ(r′)(1∣r−r′∣)dV′=−14π∭V{ex(∂2∂x2+∂2∂y2+∂2∂z2)[Fˉx′(r′)(1∣r−r′∣)]+ey(∂2∂x2+∂2∂y2+∂2∂z2)[Fˉy′(r′)(1∣r−r′∣)]+ez(∂2∂x2+∂2∂y2+∂2∂z2)[Fˉz′(r′)(1∣r−r′∣)]}dV′=−14π∭VFˉ(r′)∇2(1∣r−r′∣)dV′-\frac{1}{4\pi}\nabla^2 \iiint_V \bar{F}(r^\prime) (\frac{1}{|r-r\prime|})dV^\prime = \\ -\frac{1}{4\pi}\iiint_V \{ e_{x} (\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}+\frac{\partial^2}{\partial z^2})[\bar{F}_{x^\prime}(r^\prime) (\frac{1}{|r-r\prime|})] \\+ e_{y} (\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}+\frac{\partial^2}{\partial z^2})[\bar{F}_{y^\prime}(r^\prime) (\frac{1}{|r-r\prime|})] \\+ e_{z} (\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}+\frac{\partial^2}{\partial z^2})[\bar{F}_{z^\prime}(r^\prime) (\frac{1}{|r-r\prime|})] \}dV^\prime \\ = -\frac{1}{4\pi} \iiint_V \bar{F}(r^\prime) \nabla^2(\frac{1}{|r-r\prime|})dV^\prime4π12VFˉ(r)(rr′∣1)dV=4π1V{ex(x22+y22+z22)[Fˉx(r)(rr′∣1)]+ey(x22+y22+z22)[Fˉy(r)(rr′∣1)]+ez(x22+y22+z22)[Fˉz(r)(rr′∣1)]}dV=4π1VFˉ(r)2(rr′∣1)dV(3)

2. 将拉普拉斯运算转换为梯度偏导和矢量三重积之差

∇2A=∇(∇⋅A)−∇×(∇×A)\nabla^2A = \nabla (\nabla \cdot A)- \nabla \times(\nabla \times A)2A=(A)×(×A)
上式为矢量三重积公式,即可以得到向量场的求解公式:
Fˉ(r)=−∇Φ(r)+∇×Aˉ(r)\bar F(r) =-\nabla \Phi(r)+\nabla \times \bar A(r)Fˉ(r)=∇Φ(r)+×Aˉ(r)(4)
其中:
Φ(r)=∇⋅(14π∭VFˉ(r′)(1∣r−r′∣)dV′)\Phi(r) = \nabla \cdot (\frac{1}{4\pi} \iiint_V \bar{F}(r^\prime) (\frac{1}{|r-r\prime|})dV^\prime )Φ(r)=(4π1VFˉ(r)(rr′∣1)dV)(5)
Aˉ(r)=∇×(14π∭VFˉ(r′)(1∣r−r′∣)dV′)\bar A(r) = \nabla \times (\frac{1}{4\pi} \iiint_V \bar{F}(r^\prime) (\frac{1}{|r-r\prime|})dV^\prime )Aˉ(r)=×(4π1VFˉ(r)(rr′∣1)dV)(6)

3. Φ(r)\Phi(r)Φ(r)的进一步推导

应用等式:∇⋅(Fˉ(r′)δ(r))=Fˉ(r′)⋅∇δ(r)\nabla \cdot (\bar F(r') \delta(r))= \bar F(r') \cdot \nabla \delta(r)(Fˉ(r)δ(r))=Fˉ(r)δ(r) 以及等式:∇(1∣r−r′∣)=−∇′(1∣r−r′∣)\nabla(\frac{1}{|r-r'|})=-\nabla' (\frac{1}{|r-r'|})(rr1)=(rr1) ,可以得到:
Φ(r)=∇⋅(14π∭VFˉ(r′)(1∣r−r′∣)dV′)=14π∭V∇⋅Fˉ(r′)∣r−r′∣dV′−14π∬S′Fˉ(r′)⋅dS′∣r−r′∣\Phi(r) = \nabla \cdot (\frac{1}{4\pi} \iiint_V \bar{F}(r^\prime) (\frac{1}{|r-r\prime|})dV^\prime ) =\frac{1}{4\pi} \iiint_V \frac{\nabla \cdot \bar{F}(r') }{|r-r'|}dV' - \frac{1}{4\pi} \iint_{S'} \frac{\bar{F}(r') \cdot dS' }{|r-r'|}Φ(r)=(4π1VFˉ(r)(rr′∣1)dV)=4π1VrrFˉ(r)dV4π1SrrFˉ(r)dS
(7)

4. Aˉ(r)\bar A(r)Aˉ(r) 的进一步推导

这个推导难度较大。
首先要证明:∇×(Fˉ(r′)∣r−r′∣)=−Fˉ(r′)×∇(1∣r−r′∣)\nabla \times (\frac{\bar F(r')}{|r-r'|})=-\bar F(r') \times \nabla (\frac{1}{|r-r'|})×(rrFˉ(r))=Fˉ(r)×(rr1) (8)
由于 ∇×(Fˉ(r′)∣r−r′∣)=∇×Fˉ(r′)∣r−r′∣−Fˉ(r′)×∇(1∣r−r′∣)\nabla \times (\frac{\bar F(r')}{|r-r'|})= \frac{\nabla \times \bar F(r')}{|r-r'|} - \bar F(r') \times \nabla(\frac{1}{|r-r'|})×(rrFˉ(r))=rr×Fˉ(r)Fˉ(r)×(rr1) ,因为 ∇×Fˉ(r′)=0\nabla \times \bar F(r') = 0×Fˉ(r)=0,故上式成立!
另外一种证明方式是将叉乘写成行列式形式,求偏导时 可以视为常量,因此下面推导成立[3]:
∣exeyez∂∂x∂∂y∂∂zFˉx′(r′)∣r−r′∣Fˉy′(r′)∣r−r′∣Fˉz′(r′)∣r−r′∣∣=∣exeyez∂∂x1∣r−r′∣∂∂y1∣r−r′∣∂∂z1∣r−r′∣Fˉx′Fˉy′(r′)Fˉz′(r′)∣=−∣exeyezFˉx′Fˉy′(r′)Fˉz′(r′)∂∂x1∣r−r′∣∂∂y1∣r−r′∣∂∂z1∣r−r′∣∣\left| \begin{matrix} e_x & e_y & e_z\\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} &\frac{\partial}{\partial z}\\ \frac{\bar F_{x'}(r')}{|r-r'|} & \frac{\bar F_{y'}(r')}{|r-r'|} &\frac{\bar F_{z'}(r')}{|r-r'|} \\ \end{matrix} \right| = \left| \begin{matrix} e_x & e_y & e_z\\ \frac{\partial}{\partial x}\frac{1}{|r-r'|} & \frac{\partial}{\partial y}\frac{1}{|r-r'|} &\frac{\partial}{\partial z}\frac{1}{|r-r'|} \\ \bar F_{x'} & \bar F_{y'}(r') &\bar F_{z'}(r') \\ \end{matrix} \right| =- \left| \begin{matrix} e_x & e_y & e_z\\ \bar F_{x'} & \bar F_{y'}(r') &\bar F_{z'}(r') \\ \frac{\partial}{\partial x}\frac{1}{|r-r'|} & \frac{\partial}{\partial y}\frac{1}{|r-r'|} &\frac{\partial}{\partial z}\frac{1}{|r-r'|} \\ \end{matrix} \right|exxrrFˉx(r)eyyrrFˉy(r)ezzrrFˉz(r)=exxrr1Fˉxeyyrr1Fˉy(r)ezzrr1Fˉz(r)=exFˉxxrr1eyFˉy(r)yrr1ezFˉz(r)zrr1
其次要证明:
∭V∇×Fˉ(r′)dV′=∬SdS′ˉ×Fˉ(r′)=−∬SFˉ(r′)×dS′ˉ\iiint_V \nabla \times \bar F(r') dV' = \iint_S \bar{dS'} \times \bar F(r') =-\iint_S \bar F(r') \times \bar{dS'}V×Fˉ(r)dV=SdSˉ×Fˉ(r)=SFˉ(r)×dSˉ(9)
将等式左边的叉乘进行行列式展开,并且由于∭V∂F∂xdxdydz=∬SFdydz\iiint_V \frac{\partial F} {\partial x} dxdydz =\iint_S FdydzVxFdxdydz=SFdydz,因此可推导得出下式成立:
∇×Fˉ(r′)dV′=∣exeyez∂∂x′∂∂y′∂∂z′Fˉx(r′)dV′Fˉy(r′)dV′Fˉz(r′)dV′∣=∣exeyez∂∂x′dV′∂∂y′dV′∂∂z′dV′Fˉx(r′)Fˉy(r′)Fˉz(r′)∣=∇dV′×Fˉ(r′)=dS′ˉ×Fˉ(r′)=−Fˉ(r′)×dS′ˉ\begin{align} \nabla \times \bar F(r') dV' &= \left| \begin{matrix} e_x & e_y & e_z\\ \frac{\partial}{\partial x'} & \frac{\partial}{\partial y'} &\frac{\partial}{\partial z'}\\ \bar F_{x}(r')dV' & \bar F_{y}(r')dV' &\bar F_{z}(r')dV' \\ \end{matrix} \right| \\ &= \left| \begin{matrix} e_x & e_y & e_z\\ \frac{\partial}{\partial x'}dV' & \frac{\partial}{\partial y'} dV'&\frac{\partial}{\partial z'}dV'\\ \bar F_{x}(r') & \bar F_{y}(r') &\bar F_{z}(r') \\ \end{matrix} \right| \\ &= \nabla dV' \times \bar F(r') \\ &= \bar{dS'} \times \bar F(r') \\ &= - \bar F(r') \times \bar{dS'} \\ \end{align}×Fˉ(r)dV=exxFˉx(r)dVeyyFˉy(r)dVezzFˉz(r)dV=exxdVFˉx(r)eyydVFˉy(r)ezzdVFˉz(r)=dV×Fˉ(r)=dSˉ×Fˉ(r)=Fˉ(r)×dSˉ(10)
Aˉ(r)\bar A(r)Aˉ(r)进一步展开的推导如下:
Aˉ(r)=∇×(14π∭VFˉ(r′)(1∣r−r′∣)dV′)=14π∭V∇×(Fˉ(r′)∣r−r′∣)dV′=−14π∭VFˉ(r′)×∇(1∣r−r′∣)dV′=14π∭VFˉ(r′)×∇′(1∣r−r′∣)dV′=14π∭V(∇′×Fˉ(r′)∣r−r′∣−∇′×(Fˉ(r′)∣r−r′∣))dV′=14π∭V∇′×Fˉ(r′)∣r−r′∣dV′−14π∬SdS′ˉ×Fˉ(r′)∣r−r′∣\begin{align} \bar A(r) & = \nabla \times (\frac{1}{4\pi} \iiint_V \bar{F}(r^\prime) (\frac{1}{|r-r\prime|})dV^\prime ) \\ &=\frac{1}{4\pi} \iiint_V \nabla \times (\frac{\bar{F}(r')}{|r-r'|})dV' \\ &=-\frac{1}{4\pi} \iiint_V \bar{F}(r') \times\nabla (\frac{1}{|r-r'|})dV'\\ &=\frac{1}{4\pi} \iiint_V \bar{F}(r') \times\nabla ' (\frac{1}{|r-r'|})dV' \\ &=\frac{1}{4\pi} \iiint_V (\frac{\nabla ' \times\bar{F}(r')}{|r-r'|}-\nabla' \times (\frac{\bar{F}(r')}{|r-r'|}))dV' \\ &=\frac{1}{4\pi} \iiint_V \frac{\nabla ' \times\bar{F}(r')}{|r-r'|} dV' -\frac{1}{4\pi} \iint_S \frac{\bar{dS'} \times\bar{F}(r')}{|r-r'|} \end{align}Aˉ(r)=×(4π1VFˉ(r)(rr′∣1)dV)=4π1V×(rrFˉ(r))dV=4π1VFˉ(r)×(rr1)dV=4π1VFˉ(r)×(rr1)dV=4π1V(rr×Fˉ(r)×(rrFˉ(r)))dV=4π1Vrr×Fˉ(r)dV4π1SrrdSˉ×Fˉ(r)(11)
三、矢量场唯一性定理证明
由上可知,矢量场可以通过其散度、旋度和边界S上约束来计算。进一步可以证明矢量的散度、旋度和边界条件确定的矢量场是唯一的。使用反证法,假设不唯一,则存在δFˉ=Fˉ1−Fˉ2\delta \bar F = \bar F_1 -\bar F_2δFˉ=Fˉ1Fˉ2,则:
{∇⋅δFˉ=0∇×δFˉ=0\left \{ \begin{align} & \nabla \cdot \delta \bar F = 0 \\ & \nabla \times \delta \bar F =0 \\ \end{align} \right.{δFˉ=0×δFˉ=0
并且在边界曲面S上法向分量或切向分量给定,则:
en⋅δFˉ=0,或en×δFˉ=0\begin{align} & e_n \cdot \delta \bar F = 0 ,或\\ & e_n \times \delta \bar F =0 \\ \end{align}enδFˉ=0,或en×δFˉ=0
假设 δFˉ=∇Φ\delta \bar F = \nabla \PhiδFˉ=∇Φ,即∇2Φ=0\nabla ^2 \Phi = 02Φ=0。应用标量函数第一格林公式可得:
∭V(∣∇Φ∣2+Φ∇2Φ)dV′=∬SΦ∂Φ∂ndS′\iiint_V (|\nabla \Phi|^2 +\Phi \nabla ^2 \Phi)dV' = \iint_S \Phi \frac{\partial \Phi}{\partial n}dS'V(∣∇Φ2+Φ2Φ)dV=SΦnΦdS(12)
∭V(∣∇Φ∣2)dV′=∬SΦ∂Φ∂ndS′\iiint_V (|\nabla \Phi|^2 )dV' = \iint_S \Phi \frac{\partial \Phi}{\partial n}dS'V(∣∇Φ2)dV=SΦnΦdS(13)
如果en⋅δFˉ=0e_n \cdot \delta \bar F = 0enδFˉ=0,即式(13)左边项为0,从而 δFˉ=0\delta \bar F =0δFˉ=0
如果在边界面S上en×δFˉ=0e_n \times \delta \bar F = 0en×δFˉ=0,则在边界S上Φ\PhiΦ 为常数。结合散度定理:∬V∇2ΦdV′=∬S∇Φ⋅dS′ˉ=∬S∂Φ∂ndS′\iint_V \nabla ^2 \Phi dV' = \iint_S \nabla \Phi \cdot \bar {dS'} = \iint_S \frac{\partial \Phi}{\partial n}dS'V2ΦdV=S∇ΦdSˉ=SnΦdS ,可做如下推导:
∬SΦ∂Φ∂ndS′=Φs∬S∂Φ∂ndS′=Φs∭V∇2ΦdV′=0\begin{align} \iint_S \Phi \frac{\partial \Phi}{\partial n}dS' &=\Phi_s \iint_S \frac{\partial \Phi}{\partial n}dS' \\ &=\Phi_s \iiint_V \nabla^2\Phi dV' \\ &=0 \end{align}SΦnΦdS=ΦsSnΦdS=ΦsV2ΦdV=0
补充证明:如果在边界面S上en×∇Φ=0e_n \times \nabla \Phi = 0en×∇Φ=0,则在边界S上Φ\PhiΦ为常数。
设边界曲面S的函数为:Ψ(x,y,z)=0\Psi(x,y,z)=0Ψ(x,y,z)=0
因曲面S上: en×∇Φ=0e_n \times\nabla \Phi = 0en×∇Φ=0,即∇Ψ∣∇Ψ∣×∇Φ=0\frac{\nabla \Psi}{|\nabla \Psi|}\times \nabla \Phi=0∣∇Ψ∣∇Ψ×∇Φ=0
所以, ∇Ψ×∇Φ=0\nabla \Psi \times \nabla \Phi =0∇Ψ×∇Φ=0
所以, ∇Ψ=k∇Φ\nabla \Psi = k \nabla \Phi∇Ψ=k∇Φ
所以曲面S上,Φ(x,y,z)=kΨ(x,y,z)+Constant=Constant\Phi(x,y,z) = k \Psi(x,y,z)+Constant = ConstantΦ(x,y,z)=kΨ(x,y,z)+Constant=Constant ,得证!

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值