电磁场学中亥姆赫兹定理证明过程的理解

什么样的矢量偏微分方程可以求解呢?
亥姆霍兹定理就是用来解决这个问题的。该定理表示:如果一个矢量场的散度、旋度和边界条件确定的话,那么就可以通过散度、旋度和边界条件来求解出该矢量场,而且该解唯一。
求解矢量场的思路是:

  1. 将矢量场表示为 δ ( r ) \delta(r) δ(r)函数与矢量的空间卷积。
  2. 由于 δ ( r ) \delta(r) δ(r)函数为标量函数 − 1 4 π 1 ∣ r ∣ -\frac{1}{4\pi}\frac{1}{|r|} 4π1r1的拉普拉斯运算 δ ( r ) = − 1 4 π ∇ 2 1 ∣ r ∣ \delta(r)=-\frac{1}{4\pi}\nabla^2 \frac{1}{|r|} δ(r)=4π12r1,因此矢量场就与散度和旋度产生了关系。
  3. 通过矢量三重积公式 ∇ 2 A = ∇ × ( ∇ × A ) − ∇ ( ∇ ⋅ A ) \nabla^2 A =\nabla \times(\nabla \times A)-\nabla(\nabla \cdot A) 2A=×(×A)(A),从而可以将矢量场表示为一无散场 ∇ × A \nabla \times A ×A的旋度与一标量场 ∇ ⋅ A \nabla \cdot A A的梯度之差。

在网上看了百度文库中的《亥姆霍兹定理的证明》【1】、百度文库中《格林公式证明亥姆霍兹定理》【2】、知乎中的《亥姆霍兹定理》【3】。文献【1】中的证明最简洁清晰;【2】中竟然对矢量函数应用格林定理,又对标量函数应用矢量三重积公式,我没明白是什么技巧,而且很明显多处公式错误,真有点怀疑作者和编辑;【3】中也存在对矢量函数应用格林定理的毛病(对公式4中最后一项就是用格林公式展开的)。
下面把自己对【1】的理解重新整理一下,更改了其中部分错误,优化局部的证明思路!

一、 δ ( r ) \delta(r) δ(r)函数和空间卷积

我认为这是亥姆霍兹定理的基点,类似信号系统中的冲激响应函数。有了该函数,矢量函数就可以表示为自己与 δ ( r ) \delta(r) δ(r)的空间卷积了,即 F ˉ ( r ) = ∭ V F ˉ ( r ′ ) δ ( r − r ′ ) d V ′ \bar{F}(r)=\iiint_V \bar{F}(r^\prime) \delta(r-r^\prime)dV^\prime Fˉ(r)=VFˉ(r)δ(rr)dV
由于 δ ( r ) = − 1 4 π ∇ 2 ( 1 ∣ r ∣ ) \delta(r)=-\frac{1}{4\pi} \nabla^2(\frac{1}{|r|}) δ(r)=4π12(r1),所以,
F ˉ ( r ) = − 1 4 π ∭ V F ˉ ( r ′ ) ∇ 2 ( 1 ∣ r − r ′ ∣ ) d V ′ \bar{F}(r)=-\frac{1}{4\pi} \iiint_V \bar{F}(r^\prime) \nabla^2(\frac{1}{|r-r\prime|})dV^\prime Fˉ(r)=4π1VFˉ(r)2(rr′∣1)dV (1)
基于该卷积中的拉普拉斯算子,从而引导出来了积分、散度和旋度等对象,从而得到了亥姆霍兹定理:矢量场可以表示为旋度和梯度。

二、矢量三重积

1.拉普拉斯算子移到积分外

− 1 4 π ∭ V F ˉ ( r ′ ) ∇ 2 ( 1 ∣ r − r ′ ∣ ) d V ′ = − 1 4 π ∇ 2 ∭ V F ˉ ( r ′ ) ( 1 ∣ r − r ′ ∣ ) d V ′ -\frac{1}{4\pi} \iiint_V \bar{F}(r^\prime) \nabla^2(\frac{1}{|r-r\prime|})dV^\prime = -\frac{1}{4\pi}\nabla^2 \iiint_V \bar{F}(r^\prime) (\frac{1}{|r-r\prime|})dV^\prime 4π1VFˉ(r)2(rr′∣1)dV=4π12VFˉ(r)(rr′∣1)dV(2)
上式关键难点是:式左边是拉普拉斯运算是对标量,式右边是拉普拉斯运算是对矢量。为什么相等?
首先拉普拉斯算子是对 r求导,而不是对r’求导;其次,上式是一个矢量相等公式,相当于三个标量等式。写详细一些,对上式右边应用拉普拉斯算子的定义公式 ( ∇ 2 A ) x = ∂ 2 A x ∂ x 2 + ∂ 2 A x ∂ y 2 + ∂ 2 A x ∂ z 2 (\nabla^2A)_x=\frac{\partial^2A_x}{\partial x^2}+\frac{\partial^2A_x}{\partial y^2}+\frac{\partial^2A_x}{\partial z^2} (2A)x=x22Ax+y22Ax+z22Ax展开即可得证:
− 1 4 π ∇ 2 ∭ V F ˉ ( r ′ ) ( 1 ∣ r − r ′ ∣ ) d V ′ = − 1 4 π ∭ V { e x ( ∂ 2 ∂ x 2 + ∂ 2 ∂ y 2 + ∂ 2 ∂ z 2 ) [ F ˉ x ′ ( r ′ ) ( 1 ∣ r − r ′ ∣ ) ] + e y ( ∂ 2 ∂ x 2 + ∂ 2 ∂ y 2 + ∂ 2 ∂ z 2 ) [ F ˉ y ′ ( r ′ ) ( 1 ∣ r − r ′ ∣ ) ] + e z ( ∂ 2 ∂ x 2 + ∂ 2 ∂ y 2 + ∂ 2 ∂ z 2 ) [ F ˉ z ′ ( r ′ ) ( 1 ∣ r − r ′ ∣ ) ] } d V ′ = − 1 4 π ∭ V F ˉ ( r ′ ) ∇ 2 ( 1 ∣ r − r ′ ∣ ) d V ′ -\frac{1}{4\pi}\nabla^2 \iiint_V \bar{F}(r^\prime) (\frac{1}{|r-r\prime|})dV^\prime = \\ -\frac{1}{4\pi}\iiint_V \{ e_{x} (\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}+\frac{\partial^2}{\partial z^2})[\bar{F}_{x^\prime}(r^\prime) (\frac{1}{|r-r\prime|})] \\+ e_{y} (\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}+\frac{\partial^2}{\partial z^2})[\bar{F}_{y^\prime}(r^\prime) (\frac{1}{|r-r\prime|})] \\+ e_{z} (\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}+\frac{\partial^2}{\partial z^2})[\bar{F}_{z^\prime}(r^\prime) (\frac{1}{|r-r\prime|})] \}dV^\prime \\ = -\frac{1}{4\pi} \iiint_V \bar{F}(r^\prime) \nabla^2(\frac{1}{|r-r\prime|})dV^\prime 4π12VFˉ(r)(rr′∣1)dV=4π1V{ex(x22+y22+z22)[Fˉx(r)(rr′∣1)]+ey(x22+y22+z22)[Fˉy(r)(rr′∣1)]+ez(x22+y22+z22)[Fˉz(r)(rr′∣1)]}dV=4π1VFˉ(r)2(rr′∣1)dV(3)

2. 将拉普拉斯运算转换为梯度偏导和矢量三重积之差

∇ 2 A = ∇ ( ∇ ⋅ A ) − ∇ × ( ∇ × A ) \nabla^2A = \nabla (\nabla \cdot A)- \nabla \times(\nabla \times A) 2A=(A)×(×A)
上式为矢量三重积公式,即可以得到向量场的求解公式:
F ˉ ( r ) = − ∇ Φ ( r ) + ∇ × A ˉ ( r ) \bar F(r) =-\nabla \Phi(r)+\nabla \times \bar A(r) Fˉ(r)=∇Φ(r)+×Aˉ(r)(4)
其中:
Φ ( r ) = ∇ ⋅ ( 1 4 π ∭ V F ˉ ( r ′ ) ( 1 ∣ r − r ′ ∣ ) d V ′ ) \Phi(r) = \nabla \cdot (\frac{1}{4\pi} \iiint_V \bar{F}(r^\prime) (\frac{1}{|r-r\prime|})dV^\prime ) Φ(r)=(4π1VFˉ(r)(rr′∣1)dV)(5)
A ˉ ( r ) = ∇ × ( 1 4 π ∭ V F ˉ ( r ′ ) ( 1 ∣ r − r ′ ∣ ) d V ′ ) \bar A(r) = \nabla \times (\frac{1}{4\pi} \iiint_V \bar{F}(r^\prime) (\frac{1}{|r-r\prime|})dV^\prime ) Aˉ(r)=×(4π1VFˉ(r)(rr′∣1)dV)(6)

3. Φ ( r ) \Phi(r) Φ(r)的进一步推导

应用等式: ∇ ⋅ ( F ˉ ( r ′ ) δ ( r ) ) = F ˉ ( r ′ ) ⋅ ∇ δ ( r ) \nabla \cdot (\bar F(r') \delta(r))= \bar F(r') \cdot \nabla \delta(r) (Fˉ(r)δ(r))=Fˉ(r)δ(r) 以及等式: ∇ ( 1 ∣ r − r ′ ∣ ) = − ∇ ′ ( 1 ∣ r − r ′ ∣ ) \nabla(\frac{1}{|r-r'|})=-\nabla' (\frac{1}{|r-r'|}) (rr1)=(rr1) ,可以得到:
Φ ( r ) = ∇ ⋅ ( 1 4 π ∭ V F ˉ ( r ′ ) ( 1 ∣ r − r ′ ∣ ) d V ′ ) = 1 4 π ∭ V ∇ ⋅ F ˉ ( r ′ ) ∣ r − r ′ ∣ d V ′ − 1 4 π ∬ S ′ F ˉ ( r ′ ) ⋅ d S ′ ∣ r − r ′ ∣ \Phi(r) = \nabla \cdot (\frac{1}{4\pi} \iiint_V \bar{F}(r^\prime) (\frac{1}{|r-r\prime|})dV^\prime ) =\frac{1}{4\pi} \iiint_V \frac{\nabla \cdot \bar{F}(r') }{|r-r'|}dV' - \frac{1}{4\pi} \iint_{S'} \frac{\bar{F}(r') \cdot dS' }{|r-r'|} Φ(r)=(4π1VFˉ(r)(rr′∣1)dV)=4π1VrrFˉ(r)dV4π1SrrFˉ(r)dS
(7)

4. A ˉ ( r ) \bar A(r) Aˉ(r) 的进一步推导

这个推导难度较大。
首先要证明: ∇ × ( F ˉ ( r ′ ) ∣ r − r ′ ∣ ) = − F ˉ ( r ′ ) × ∇ ( 1 ∣ r − r ′ ∣ ) \nabla \times (\frac{\bar F(r')}{|r-r'|})=-\bar F(r') \times \nabla (\frac{1}{|r-r'|}) ×(rrFˉ(r))=Fˉ(r)×(rr1) (8)
由于 ∇ × ( F ˉ ( r ′ ) ∣ r − r ′ ∣ ) = ∇ × F ˉ ( r ′ ) ∣ r − r ′ ∣ − F ˉ ( r ′ ) × ∇ ( 1 ∣ r − r ′ ∣ ) \nabla \times (\frac{\bar F(r')}{|r-r'|})= \frac{\nabla \times \bar F(r')}{|r-r'|} - \bar F(r') \times \nabla(\frac{1}{|r-r'|}) ×(rrFˉ(r))=rr×Fˉ(r)Fˉ(r)×(rr1) ,因为 ∇ × F ˉ ( r ′ ) = 0 \nabla \times \bar F(r') = 0 ×Fˉ(r)=0,故上式成立!
另外一种证明方式是将叉乘写成行列式形式,求偏导时 可以视为常量,因此下面推导成立[3]:
∣ e x e y e z ∂ ∂ x ∂ ∂ y ∂ ∂ z F ˉ x ′ ( r ′ ) ∣ r − r ′ ∣ F ˉ y ′ ( r ′ ) ∣ r − r ′ ∣ F ˉ z ′ ( r ′ ) ∣ r − r ′ ∣ ∣ = ∣ e x e y e z ∂ ∂ x 1 ∣ r − r ′ ∣ ∂ ∂ y 1 ∣ r − r ′ ∣ ∂ ∂ z 1 ∣ r − r ′ ∣ F ˉ x ′ F ˉ y ′ ( r ′ ) F ˉ z ′ ( r ′ ) ∣ = − ∣ e x e y e z F ˉ x ′ F ˉ y ′ ( r ′ ) F ˉ z ′ ( r ′ ) ∂ ∂ x 1 ∣ r − r ′ ∣ ∂ ∂ y 1 ∣ r − r ′ ∣ ∂ ∂ z 1 ∣ r − r ′ ∣ ∣ \left| \begin{matrix} e_x & e_y & e_z\\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} &\frac{\partial}{\partial z}\\ \frac{\bar F_{x'}(r')}{|r-r'|} & \frac{\bar F_{y'}(r')}{|r-r'|} &\frac{\bar F_{z'}(r')}{|r-r'|} \\ \end{matrix} \right| = \left| \begin{matrix} e_x & e_y & e_z\\ \frac{\partial}{\partial x}\frac{1}{|r-r'|} & \frac{\partial}{\partial y}\frac{1}{|r-r'|} &\frac{\partial}{\partial z}\frac{1}{|r-r'|} \\ \bar F_{x'} & \bar F_{y'}(r') &\bar F_{z'}(r') \\ \end{matrix} \right| =- \left| \begin{matrix} e_x & e_y & e_z\\ \bar F_{x'} & \bar F_{y'}(r') &\bar F_{z'}(r') \\ \frac{\partial}{\partial x}\frac{1}{|r-r'|} & \frac{\partial}{\partial y}\frac{1}{|r-r'|} &\frac{\partial}{\partial z}\frac{1}{|r-r'|} \\ \end{matrix} \right| exxrrFˉx(r)eyyrrFˉy(r)ezzrrFˉz(r) = exxrr1Fˉxeyyrr1Fˉy(r)ezzrr1Fˉz(r) = exFˉxxrr1eyFˉy(r)yrr1ezFˉz(r)zrr1
其次要证明:
∭ V ∇ × F ˉ ( r ′ ) d V ′ = ∬ S d S ′ ˉ × F ˉ ( r ′ ) = − ∬ S F ˉ ( r ′ ) × d S ′ ˉ \iiint_V \nabla \times \bar F(r') dV' = \iint_S \bar{dS'} \times \bar F(r') =-\iint_S \bar F(r') \times \bar{dS'} V×Fˉ(r)dV=SdSˉ×Fˉ(r)=SFˉ(r)×dSˉ(9)
将等式左边的叉乘进行行列式展开,并且由于 ∭ V ∂ F ∂ x d x d y d z = ∬ S F d y d z \iiint_V \frac{\partial F} {\partial x} dxdydz =\iint_S Fdydz VxFdxdydz=SFdydz,因此可推导得出下式成立:
∇ × F ˉ ( r ′ ) d V ′ = ∣ e x e y e z ∂ ∂ x ′ ∂ ∂ y ′ ∂ ∂ z ′ F ˉ x ( r ′ ) d V ′ F ˉ y ( r ′ ) d V ′ F ˉ z ( r ′ ) d V ′ ∣ = ∣ e x e y e z ∂ ∂ x ′ d V ′ ∂ ∂ y ′ d V ′ ∂ ∂ z ′ d V ′ F ˉ x ( r ′ ) F ˉ y ( r ′ ) F ˉ z ( r ′ ) ∣ = ∇ d V ′ × F ˉ ( r ′ ) = d S ′ ˉ × F ˉ ( r ′ ) = − F ˉ ( r ′ ) × d S ′ ˉ \begin{align} \nabla \times \bar F(r') dV' &= \left| \begin{matrix} e_x & e_y & e_z\\ \frac{\partial}{\partial x'} & \frac{\partial}{\partial y'} &\frac{\partial}{\partial z'}\\ \bar F_{x}(r')dV' & \bar F_{y}(r')dV' &\bar F_{z}(r')dV' \\ \end{matrix} \right| \\ &= \left| \begin{matrix} e_x & e_y & e_z\\ \frac{\partial}{\partial x'}dV' & \frac{\partial}{\partial y'} dV'&\frac{\partial}{\partial z'}dV'\\ \bar F_{x}(r') & \bar F_{y}(r') &\bar F_{z}(r') \\ \end{matrix} \right| \\ &= \nabla dV' \times \bar F(r') \\ &= \bar{dS'} \times \bar F(r') \\ &= - \bar F(r') \times \bar{dS'} \\ \end{align} ×Fˉ(r)dV= exxFˉx(r)dVeyyFˉy(r)dVezzFˉz(r)dV = exxdVFˉx(r)eyydVFˉy(r)ezzdVFˉz(r) =dV×Fˉ(r)=dSˉ×Fˉ(r)=Fˉ(r)×dSˉ(10)
A ˉ ( r ) \bar A(r) Aˉ(r)进一步展开的推导如下:
A ˉ ( r ) = ∇ × ( 1 4 π ∭ V F ˉ ( r ′ ) ( 1 ∣ r − r ′ ∣ ) d V ′ ) = 1 4 π ∭ V ∇ × ( F ˉ ( r ′ ) ∣ r − r ′ ∣ ) d V ′ = − 1 4 π ∭ V F ˉ ( r ′ ) × ∇ ( 1 ∣ r − r ′ ∣ ) d V ′ = 1 4 π ∭ V F ˉ ( r ′ ) × ∇ ′ ( 1 ∣ r − r ′ ∣ ) d V ′ = 1 4 π ∭ V ( ∇ ′ × F ˉ ( r ′ ) ∣ r − r ′ ∣ − ∇ ′ × ( F ˉ ( r ′ ) ∣ r − r ′ ∣ ) ) d V ′ = 1 4 π ∭ V ∇ ′ × F ˉ ( r ′ ) ∣ r − r ′ ∣ d V ′ − 1 4 π ∬ S d S ′ ˉ × F ˉ ( r ′ ) ∣ r − r ′ ∣ \begin{align} \bar A(r) & = \nabla \times (\frac{1}{4\pi} \iiint_V \bar{F}(r^\prime) (\frac{1}{|r-r\prime|})dV^\prime ) \\ &=\frac{1}{4\pi} \iiint_V \nabla \times (\frac{\bar{F}(r')}{|r-r'|})dV' \\ &=-\frac{1}{4\pi} \iiint_V \bar{F}(r') \times\nabla (\frac{1}{|r-r'|})dV'\\ &=\frac{1}{4\pi} \iiint_V \bar{F}(r') \times\nabla ' (\frac{1}{|r-r'|})dV' \\ &=\frac{1}{4\pi} \iiint_V (\frac{\nabla ' \times\bar{F}(r')}{|r-r'|}-\nabla' \times (\frac{\bar{F}(r')}{|r-r'|}))dV' \\ &=\frac{1}{4\pi} \iiint_V \frac{\nabla ' \times\bar{F}(r')}{|r-r'|} dV' -\frac{1}{4\pi} \iint_S \frac{\bar{dS'} \times\bar{F}(r')}{|r-r'|} \end{align} Aˉ(r)=×(4π1VFˉ(r)(rr′∣1)dV)=4π1V×(rrFˉ(r))dV=4π1VFˉ(r)×(rr1)dV=4π1VFˉ(r)×(rr1)dV=4π1V(rr×Fˉ(r)×(rrFˉ(r)))dV=4π1Vrr×Fˉ(r)dV4π1SrrdSˉ×Fˉ(r)(11)
三、矢量场唯一性定理证明
由上可知,矢量场可以通过其散度、旋度和边界S上约束来计算。进一步可以证明矢量的散度、旋度和边界条件确定的矢量场是唯一的。使用反证法,假设不唯一,则存在 δ F ˉ = F ˉ 1 − F ˉ 2 \delta \bar F = \bar F_1 -\bar F_2 δFˉ=Fˉ1Fˉ2,则:
{ ∇ ⋅ δ F ˉ = 0 ∇ × δ F ˉ = 0 \left \{ \begin{align} & \nabla \cdot \delta \bar F = 0 \\ & \nabla \times \delta \bar F =0 \\ \end{align} \right. {δFˉ=0×δFˉ=0
并且在边界曲面S上法向分量或切向分量给定,则:
e n ⋅ δ F ˉ = 0 ,或 e n × δ F ˉ = 0 \begin{align} & e_n \cdot \delta \bar F = 0 ,或\\ & e_n \times \delta \bar F =0 \\ \end{align} enδFˉ=0,或en×δFˉ=0
假设 δ F ˉ = ∇ Φ \delta \bar F = \nabla \Phi δFˉ=∇Φ,即 ∇ 2 Φ = 0 \nabla ^2 \Phi = 0 2Φ=0。应用标量函数第一格林公式可得:
∭ V ( ∣ ∇ Φ ∣ 2 + Φ ∇ 2 Φ ) d V ′ = ∬ S Φ ∂ Φ ∂ n d S ′ \iiint_V (|\nabla \Phi|^2 +\Phi \nabla ^2 \Phi)dV' = \iint_S \Phi \frac{\partial \Phi}{\partial n}dS' V(∣∇Φ2+Φ2Φ)dV=SΦnΦdS(12)
∭ V ( ∣ ∇ Φ ∣ 2 ) d V ′ = ∬ S Φ ∂ Φ ∂ n d S ′ \iiint_V (|\nabla \Phi|^2 )dV' = \iint_S \Phi \frac{\partial \Phi}{\partial n}dS' V(∣∇Φ2)dV=SΦnΦdS(13)
如果 e n ⋅ δ F ˉ = 0 e_n \cdot \delta \bar F = 0 enδFˉ=0,即式(13)左边项为0,从而 δ F ˉ = 0 \delta \bar F =0 δFˉ=0
如果在边界面S上 e n × δ F ˉ = 0 e_n \times \delta \bar F = 0 en×δFˉ=0,则在边界S上 Φ \Phi Φ 为常数。结合散度定理: ∬ V ∇ 2 Φ d V ′ = ∬ S ∇ Φ ⋅ d S ′ ˉ = ∬ S ∂ Φ ∂ n d S ′ \iint_V \nabla ^2 \Phi dV' = \iint_S \nabla \Phi \cdot \bar {dS'} = \iint_S \frac{\partial \Phi}{\partial n}dS' V2ΦdV=S∇ΦdSˉ=SnΦdS ,可做如下推导:
∬ S Φ ∂ Φ ∂ n d S ′ = Φ s ∬ S ∂ Φ ∂ n d S ′ = Φ s ∭ V ∇ 2 Φ d V ′ = 0 \begin{align} \iint_S \Phi \frac{\partial \Phi}{\partial n}dS' &=\Phi_s \iint_S \frac{\partial \Phi}{\partial n}dS' \\ &=\Phi_s \iiint_V \nabla^2\Phi dV' \\ &=0 \end{align} SΦnΦdS=ΦsSnΦdS=ΦsV2ΦdV=0
补充证明:如果在边界面S上 e n × ∇ Φ = 0 e_n \times \nabla \Phi = 0 en×∇Φ=0,则在边界S上 Φ \Phi Φ为常数。
设边界曲面S的函数为: Ψ ( x , y , z ) = 0 \Psi(x,y,z)=0 Ψ(x,y,z)=0
因曲面S上: e n × ∇ Φ = 0 e_n \times\nabla \Phi = 0 en×∇Φ=0,即 ∇ Ψ ∣ ∇ Ψ ∣ × ∇ Φ = 0 \frac{\nabla \Psi}{|\nabla \Psi|}\times \nabla \Phi=0 ∣∇Ψ∣∇Ψ×∇Φ=0
所以, ∇ Ψ × ∇ Φ = 0 \nabla \Psi \times \nabla \Phi =0 ∇Ψ×∇Φ=0
所以, ∇ Ψ = k ∇ Φ \nabla \Psi = k \nabla \Phi ∇Ψ=k∇Φ
所以曲面S上, Φ ( x , y , z ) = k Ψ ( x , y , z ) + C o n s t a n t = C o n s t a n t \Phi(x,y,z) = k \Psi(x,y,z)+Constant = Constant Φ(x,y,z)=kΨ(x,y,z)+Constant=Constant ,得证!

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值