一维Helmholtz方程的Chebyshev - Galerkin谱方法以及Python实现

Legendre-Galerkin方法以及Chebyshev-Legendre-Galerkin方法以及Python实现

加权余量法简介

给定算子方程以及边界条件:
{ T u − f = 0 u ∈ V B u − g = 0 u ∈ S \begin{cases} Tu - f = 0 & u \in V \\ Bu - g = 0 & u \in S \end{cases} { Tuf=0Bug=0uVuS
其中 u u u为待求函数, T T T 为区域内部 V V V 上算子, B B B 为区域边界上的算子, f , g f, g f,g 分别为定义在区域内部和区域边界的函数.

处理上述问题的加权余量方法如下:
首先,设方程组的近似解为:
u n = ∑ i = 1 n a i φ i ( x 1 , x 2 , ⋯   , x m ) u_{n} = \sum\limits_{i = 1}^{n}a_{i} \varphi_{i}(x_{1}, x_{2}, \cdots, x_{m}) un=i=1naiφi(x1,x2,,xm)
其中, a i , ( i = 1 , ⋯   , n ) a_{i}, (i = 1, \cdots, n) ai,(i=1,,n) 待定, φ i \varphi_{i} φi为某个容许空间上的基函数(具体什么空间需要具体分析.)
将方程带入原方程后一般无法近似精确求解,即在一般情况下, T u n ≠ f Tu_{n} \neq f Tun=f
因此,引入以下两个残差函数:
{ R v = T u n − f R s = B u n − g \begin{cases} R_{v} = Tu_{n} - f \\ R_{s} = Bu_{n} - g \end{cases} { Rv=TunfRs=Bung
统称上述两个残差函数为 剩 余 函 数 \color{red}剩余函数 .
加权余量法的思想是适当选取 W v i , W s i W_{vi},W_{si} Wvi,Wsi使得余量 R v R_{v} Rv以及 R s R_{s} Rs在某种意义上为0,一般的,可以令余量与加权内积的满足正交性条件:
{ ( R v , W v i ) v = ∫ V R v W v i d V = ∫ V ( T u n − f ) W v i d V = 0 ( R s , W s i ) s = ∫ S R s W s i d S = ∫ S ( B u n − g ) W s i d S = 0 \begin{cases} (R_{v}, W_{vi})_{v} = \int_{V} R_{v}W_{vi}dV = \int_{V} \left( Tu_{n} - f \right)W_{vi} dV = 0 \\ (R_{s}, W_{si})_{s} = \int_{S} R_{s}W_{si}dS = \int_{S} \left( Bu_{n} - g \right)W_{si} dS = 0 \end{cases} { (Rv,Wvi)v=VRvWvidV=V(Tunf)WvidV=0(Rs,Wsi)s=SRsWsidS=S(Bung)WsidS=0
如果适当的选取 u n u_{n} un,如使得 u n u_{n} un能够满足边界条件, 则上面的正交性条件将退化为:
( R v , W v i ) v = ∫ V ( T u n − f ) W v i d V = 0 (R_{v}, W_{vi})_{v} = \int_{V} \left( Tu_{n} - f \right)W_{vi} dV =0 (Rv,Wvi)v=V(Tunf)WvidV=0
将上式的加权余量法称为 内 部 法 \color{red}{内部法} ;
如果 u n u_{n} un的选取满足 T u n − f = 0 Tu_{n} - f = 0 Tunf=0,则上面的方程组将退化为:
( R s , W s i ) s = ∫ S ( B u n − g ) W s i d S = 0 (R_{s}, W_{si})_{s} = \int_{S} \left( Bu_{n} - g \right)W_{si} dS = 0 (Rs,Wsi)s=S(Bung)WsidS=0
称上述的方法为加权余量的 边 界 法 \color{red}{边界法} .
同理,如果选取的 u n u_{n} un既不满足内部方程,又不满足边界方程,则必须同时用两个正交性条件消除剩余.
一般的,会选取合适的基,使得基函数满足边界条件,即考虑内部法.
对于内部法,将近似解带入内积中,选取 n n n个权函数 W v i , ⋯   , W v n W_{vi}, \cdots, W_{vn} Wvi,,Wvn可得到方程组:
∫ V ( T u n − f ) W v i d V = 0 , ( i = 1 , 2 , ⋯   , n ) \int_{V} \left( Tu_{n} - f \right) W_{vi} dV = 0, \quad (i = 1, 2, \cdots, n) V(Tunf)WvidV=0,(i=1,2,,n)
再从上述方程组中求解出 a i a_{i} ai,最终得到逼近解.

由上,总结加权余量方法的步骤如下:

  1. 选取适当的基函数.
  2. 带入算子方程,求出剩余表达式.
  3. 选取适当个数权函数作剩余表达式和权函数的内积,并令其正交消除剩余,从方程中求解出坐标.

注:加权余量法中权函数的选取是非常重要的, 它和所求近似解的精度有着密切的关系, 特别的如果将权函数就取为 W v i = φ i ,   ( i = 1 , 2 , ⋯   , n ) W_{vi} = \varphi_{i}, \ (i= 1, 2, \cdots, n) Wvi=φi, (i=1,2,,n), 则将得到方程组:
∫ V ( T u n − f ) φ i d V = 0 ,   ( i = 1 , 2 , ⋯   , n ) \int_{V} \left( Tu_{n} - f \right) \varphi_{i} dV = 0 , \ (i= 1, 2, \cdots, n) V(Tunf)φidV=0, (i=1,2,,n)
称上述方程组为 G a l e r k i n 方 程 组 \color{red}{Galerkin}方程组 Galerkin, 其解称为 G a l e r k i n 系 数 . \color{red}{Galerkin}系数. Galerkin.

一维 H e l m h o l t z Helmholtz Helmholtz方程的Galerkin 方法

下面进入主题,考虑如下一维齐次 D i r i c h l e t Dirichlet Dirichlet型边界条件的 H e l m h o l t z Helmholtz Helmholtz方程:
{ − u ′ ′ + α u = f    i n   I = ( − 1 , 1 ) u ( ± 1 ) = 0 \begin{cases} -u ^{''} + \alpha u = f \ \ in \ I = (-1, 1) \\ u(\pm1) = 0 \end{cases} { u+αu=f  in I=(1,1)u(±1)=0
定义空间
P N 0 = { ϕ ∈ P N ∣ ϕ ( ± 1 ) = 0 } P^{0}_{N} = \left\lbrace \phi \in P_{N} | \phi(\pm1) = 0\right\rbrace PN0={ ϕPNϕ(±1)=0}
其中 P N P_{N} PN 表示次数不超过N的全体多项式组成的空间, 则显然可知 P N 0 P^{0}_{N} PN0 N − 2 N-2 N2维线性空间.利用加权余量法的步骤推导上述方程的 G a l e r k i n Galerkin Galerkin方法:

  1. 取试函数: u N = ∑ i = 0 N − 2 a i ϕ i ( x ) u_{N} = \sum\limits_{i = 0}^{N - 2} a_{i}\phi_{i}(x) uN=i=0N2aiϕi(x), 其中 ϕ i ( x ) \phi_{i}(x) ϕi(x)为空间 P N 0 P^{0}_{N} PN0的基函数.
  2. u N u_{N} uN代入原方程得到剩余表达式:
    R v = − u N ′ ′ + α u N − f R_{v} = -u_{N}^{''} + \alpha u_{N} - f Rv=uN+αuNf
  3. 在权函数 ω ( x ) \omega(x) ω(x)的意义下得到 G a l e r k i n 方 程 组 : Galerkin方程组: Galerkin:
    ∫ − 1 1 R v ( x ) ϕ j ( x ) ω ( x ) d x = 0 j = 0 , 1 , ⋯   , N − 2 \int_{-1}^{1} R_{v}(x)\phi_{j}(x)\omega(x) dx = 0 \quad j = 0, 1,\cdots, N-2 11Rv(x)ϕj(x)ω(x)dx=0j=0,1,,N2
    实际上,利用线性空间的定义, 上述过程一般还可以描述为如下:
    u N ∈ P N 0 u_{N} \in P^{0}_{N} uNPN0, s.t.
    ∫ − 1 1 R v ϕ j ω ( x ) d x = 0 ∀ v N ∈ P N 0 \int_{-1}^{1}R_{v} \phi_{j}\omega(x) dx = 0 \quad \forall v_{N} \in P^{0}_{N} 11Rvϕjω(x)dx=0vNPN0
    将残量带入,即:
    u N ∈ P N 0 u_{N} \in P^{0}_{N} uNPN0, s.t.
    − ( u N ′ ′ , v N ) ω + α ( u N , v N ) ω = ( f , v N ) ω ∀ v N ∈ P N 0 -(u_{N}^{''} , v_{N})_{\omega} + \alpha(u_{N}, v_{N})_{\omega} = (f, v_{N})_{\omega} \quad \forall v_{N} \in P_{N}^{0} (uN,vN)ω+α(uN,vN)ω=(f,vN)ωvNPN0

其中 ( u , v ) ω : = ∫ − 1 1 u ( x ) v ( x ) ω ( x ) d x (u,v)_{\omega} := \int_{-1}^{1} u(x)v(x)\omega(x)dx (u,v)ω

### 如何在微信中集成和使用 ChatGPT 或百度的文心一言服务 目前,官方并没有直接支持通过微信内置浏览器访问 ChatGPT 的网页版[^1]。然而,对于希望在微信环境中体验类似功能的用户来说,存在几种替代方案: #### 使用第三方小程序或公众号 一些开发者创建了专门的小程序或微信公众账号来间接接入这些AI服务平台。例如,“通义千问”已经上线了微信小程序版本,允许用户更便捷地与其交互。 #### 浏览器内嵌方式 如果想要尝试像文心一言这样的国内产品,在微信内部打开其官方网站也是可行的方法之一。只需点击下方链接即可进入相应页面: - 文心一言:[https://yiyan.baidu.com/](https://yiyan.baidu.com/) 需要注意的是,由于网络环境的不同以及各平台政策的变化,具体可用性和稳定性可能会有所差异。建议定期关注目标平台最新公告获取最准确的信息。 ```python # 示例代码用于说明如何通过Python脚本调用API接口(仅作概念展示) import requests def get_response_from_api(prompt, api_url="http://example.com/api"): response = requests.post(api_url, json={"message": prompt}) return response.json() prompt_text = "你好" result = get_response_from_api(prompt_text) print(result['reply']) ``` 此段代码展示了理论上可以通过编程手段实现与某些开放API对接的方式,但实际上要在微信生态里做到这一点还需要遵循特定的安全指引和技术文档指导[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值