NumPy 数组属性

NumPy 数组属性

本章节我们将来了解 NumPy 数组的一些基本属性。

NumPy 数组的维数称为秩(rank),一维数组的秩为 1,二维数组的秩为 2,以此类推。

在 NumPy中,每一个线性的数组称为是一个轴(axis),也就是维度(dimensions)。比如说,二维数组相当于是两个一维数组,其中第一个一维数组中每个元素又是一个一维数组。所以一维数组就是 NumPy 中的轴(axis),第一个轴相当于是底层数组,第二个轴是底层数组里的数组。而轴的数量——秩,就是数组的维数。

很多时候可以声明 axis。axis=0,表示沿着第 0 轴进行操作,即对每一列进行操作;axis=1,表示沿着第1轴进行操作,即对每一行进行操作。

NumPy 的数组中比较重要 ndarray 对象属性有:

属性说明
ndarray.ndim秩,即轴的数量或维度的数量
ndarray.shape数组的维度,对于矩阵,n 行 m 列
ndarray.size数组元素的总个数,相当于 .shape 中 n*m 的值
ndarray.dtypendarray 对象的元素类型
ndarray.itemsizendarray 对象中每个元素的大小,以字节为单位
ndarray.flagsndarray 对象的内存信息
ndarray.realndarray元素的实部
ndarray.imagndarray 元素的虚部
ndarray.data包含实际数组元素的缓冲区,由于一般通过数组的索引获取元素,所以通常不需要使用这个属性。

ndarray.ndim

ndarray.ndim 用于返回数组的维数,等于秩。

实例

复制代码

import numpy as np

a=np.arange(12)

print(a.ndim)   #现在只有一个维度

# 现在调整其大小

b=np.reshape(4,3)  #b有两个维度

print(b.ndim)

 

---------------执行以上程序,返回的结果为------------------

1
2

复制代码

ndarray.shape

ndarray.shape 表示数组的维度,返回一个元组,这个元组的长度就是维度的数目,即 ndim 属性(秩)。比如,一个二维数组,其维度表示"行数"和"列数"。

ndarray.shape 也可以用于调整数组大小。

复制代码

import numpy as np 

a=np.array([[1,2,3],[4,5,6]])

print(a.shape)

 

---------------执行以上程序,返回的结果为------------------

(2, 3)

复制代码

调整数组大小。

复制代码

import numpy as np 

a=np.array([[1,2,3],[4,5,6]])

a.shape=(3,2)

print(a)

 

---------------执行以上程序,返回的结果为------------------

[[1 2]
 [3 4]
 [5 6]]

复制代码

NumPy 也提供了 reshape 函数来调整数组大小。

复制代码

import numpy as np

a=np.array([[1,2,3],[4,5,6]])

b=a.reshape(3,2)

print(b)

 

---------------执行以上程序,返回的结果为------------------

[[1 2]
 [3 4]
 [5 6]]

复制代码

ndarray.itemsize

ndarray.itemsize 以字节的形式返回数组中每一个元素的大小。

例如,一个元素类型为 float64 的数组 itemsiz 属性值为 8(float64 占用 64 个 bits,每个字节长度为 8,所以 64/8,占用 8 个字节),又如,一个元素类型为 complex32 的数组 item 属性为 4(32/8)。

复制代码

import numpy as np

a=np.array([1,2,3,4,5,6,7,8],dtype=np.int8)

print(a.itemsize)

 

b=np.array([1,2,3,4,5,6,7,8],dtype=np.float64)

print(b.itemsize)

 

---------------执行以上程序,返回的结果为------------------

1
8

复制代码

ndarray.flags

ndarray.flags 返回 ndarray 对象的内存信息,包含以下属性:

属性描述
C_CONTIGUOUS (C)数据是在一个单一的C风格的连续段中
F_CONTIGUOUS (F)数据是在一个单一的Fortran风格的连续段中
OWNDATA (O)数组拥有它所使用的内存或从另一个对象中借用它
WRITEABLE (W)数据区域可以被写入,将该值设置为 False,则数据为只读
ALIGNED (A)数据和所有元素都适当地对齐到硬件上
UPDATEIFCOPY (U)这个数组是其它数组的一个副本,当这个数组被释放时,原数组的内容将被更新

让我们使用函数来输出"Hello World!":

复制代码

import numpy as np 

a=np.array([1,2,3,4,5])

print(a.flags)

 

---------------执行以上程序,返回的结果为------------------

  C_CONTIGUOUS : True
  F_CONTIGUOUS : True
  OWNDATA : True
  WRITEABLE : True
  ALIGNED : True
  WRITEBACKIFCOPY : False
  UPDATEIFCOPY : False

复制代码

 

numpy数组元素周围的操作可以通过以下几种方式实现: 1. 切片操作:可以使用numpy数组的切片操作来获取数组中元素的周围元素。 例如,对于一个二维数组arr,要获取第i行第j列元素周围的元素,可以使用如下切片操作: ```python arr[i-1:i+2, j-1:j+2] ``` 这将返回一个3x3的子数组,其中心元素为arr[i,j],周围的8个元素为该子数组的其余元素。 2. 使用numpy.pad()函数:numpy.pad()函数可以用来在数组的边缘添加一个或多个值,从而扩展数组的大小。可以使用该函数来添加额外的行和列,然后通过索引访问周围的元素。 例如,对于一个二维数组arr,要获取第i行第j列元素周围的元素,可以使用如下代码: ```python padded_arr = np.pad(arr, ((1, 1), (1, 1)), mode='constant') surrounding = padded_arr[i:i+3, j:j+3] ``` 这将在数组的边缘添加一行和一列,并使用常量值填充这些额外的元素。然后可以使用切片操作来获取中心元素周围的元素。 3. 使用numpy.roll()函数:numpy.roll()函数可以用来沿着给定轴滚动数组的元素。可以使用该函数来将数组的行和列进行滚动,从而获取周围的元素。 例如,对于一个二维数组arr,要获取第i行第j列元素周围的元素,可以使用如下代码: ```python rows, cols = arr.shape row_indices = np.arange(i-1, i+2) % rows col_indices = np.arange(j-1, j+2) % cols surrounding = arr[row_indices][:, col_indices] ``` 这将将第i行向上和向下滚动一行,并将第j列向左和向右滚动一列,从而获取中心元素周围的元素。使用模运算可以确保在数组的边缘滚动时正确处理索引。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值