Introduction to Topology Problem Set VII 2024Java

Java Python Introduction to Topology

July 2024

Problem Set VII

1.  A collection A of subsets of N has the strong finite intersection property  (SFIP) if, and only if, for every finite subset A0  ⊆ A , we have that ∩ A0  is infinite.

Prove that if A ⊆ P(N) has the SFIP, then it is included in anon-principal ultrafilter. Hint Zorn’s Lemma.

2.  Let X be a topological space and let F be a filter on N.

We will say that the sequence ~x = 〈xn  : n ∈ N〉 F-converges to x, denoted by

xn → F  x   or   x =  lim  xn ;

n→F

if, and only if, for every open neighborhood U of x, {n ∈ N : xn  ∈ U} ∈ F. We will denote by LimF (~x) := {x ∈ X : xn  → F  x} .

(a)  Prove that xn → x if, and only if, xn → Fr x, where Fr is the Frechet filter.

(b)  Prove that~ X is a compact space if,and only if, for every ultrafilter U on N, and every sequence x = 〈xn  : n ∈ N〉  of elements of X , the set LimU (~x) is non-empty.

(c)  Prove that X is a Hausdorff space if, and only if, for every ultrafilter U on N, and every sequence ~x = 〈xn  : n ∈ N〉  of elements of X , the set LimU (~x) has at most one point.

(d)  Conclude that if X is a compact Hausdorff space then for every ultrafilter U on N, and every sequence ~x = 〈xn  : n ∈ N〉  of elements of X , the set LimU (~x) has a unique point. This point is called the U -limit of the sequence ~x.

3.  Prove that if X is a compact subspace of the Sorgenfrey line, then X is countable.

4.   (a)  Prove that if X is a c Introduction to Topology Problem Set VII 2024Java ompact Hausdorff space, x ∈ X , and U is an open neighbourhood of x, then there exists some open neighborhood V of x such that V ⊆ U.

Recall that a subset A of the topological space X is dense if, and only if, A = X .

(b)  Prove that if X is a compact Hausdorff space and {Un  : n ∈ N} is a countable collection of dense open subsets of X , then their intersection

∩ Un n∈N

is dense in X .

5.  Given n ∈ N and ~a ∈ {0; 1}n , let

[~a] := {~x ∈ {0; 1}N  : 〈x1 ;:::;xn 〉 = ~a}:

(a)  Prove that the collection

{[a] : a ∈ {0, 1}n  for some n ∈ N}

is a basis for the product topology on {0, 1}N .

A topological space is zero-dimensional if, and only if, it has a basis consisting of clopen sets.

(b)  Prove that {0, 1}N  is zero-dimensional. Hint Prove that each [a] is also closed.

(c)  Prove that a zero-dimensional space with closed points is totally disconnected.

(d)  Prove that {0, 1}N  is compact.

Hint If O is an open cover of {0, 1}N  without a finite subcover, recursively construct a sequence x ∈ {0, 1}N  such that for all n  ∈ N, the basic open neighbourhood [〈x1,..., xn〉] of ⃗x cannot be covered by finitely many elements of O; acontradiction.

(e)  Prove that {0, 1}N  has no isolated points.

(f)  Conclude that {0, 1}N  is uncountable.

6.  Let X  and Y be topological spaces with Y compact Hausdorff:

(a)  Prove that the projection π 1 : X  × Y → X  is aclosed function.

(b)  Prove that a function f : X → Y is continuous if, and only if, its graph

Γf  := {〈x,f(x)〉 : x ∈ X}

is a closed subset of X × Y         

  • 5
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
《计算拓扑学导论》是美国数学学会于2010年出版的一本关于计算拓扑学的简介。计算拓扑学是数学中的一个分支领域,它涉及将拓扑学的概念和方法与计算机科学相结合,以解决实际问题。 这本书以清晰而简洁的方式介绍了计算拓扑学的基本概念和技术。它首先介绍了拓扑学的基本概念,如点、线、面以及更高维度的拓扑结构。然后,它引入了拓扑空间和连续映射的概念,并解释了在计算机中如何表示和操作拓扑数据。 接下来,书中介绍了一些计算拓扑学的基本工具和技术。其中包括拓扑不变量的计算,拓扑特征提取,拓扑演化等。通过这些工具和技术,读者可以学会如何分析和处理各种类型的拓扑数据,如网络、图像、地理空间数据等。 此外,该书还介绍了计算拓扑学在实际应用中的一些案例和领域。例如,它讨论了在生物学、医学、材料科学、计算机图形学等领域中如何利用计算拓扑学的方法解决实际问题。这些案例不仅帮助读者理解计算拓扑学的概念和方法,还展示了它在解决实际问题中的潜力和价值。 总的来说,《计算拓扑学导论》是一本适合初学者的入门教材。它以简洁明了的方式介绍了计算拓扑学的基本概念和技术,并结合实际案例展示了它的应用。这本书为读者提供了一种理解和应用计算拓扑学的方法,对于对该领域感兴趣的学生、研究人员和工程师来说是一本很有价值的参考书。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值