COMP2271 Data Science 2023Java

Java Python COMP2271-WE01

Data Science

2023

Section A Probability and Statistics

Question 1

(a)  Consider the joint probability mass function (PMF) fXY (x,y) of two dis- crete random variables X and Y given by the following table:

i.  What value does the constant c need to have in order to make this a valid joint PMF? [2  Marks]

ii.  Determine the marginal distribution fX  of X . [2  Marks]

iii.  Calculate the conditional probability P(Y = 2 | X = 1). [2  Marks]

iv.  Calculate the covariance Cov(X, Y). [4 Marks]

v.  Calculate E[Y2  − 2X]. [2 Marks]

(b)  A server farm  has 20 servers.  When  a  request arrives,  it  is allocated to one of the 20 servers, selected uniformly at random.  Let X be the random variable that counts the number of servers that have not been allocated any request after 15 requests have arrived.

i. Calculate P(X = 19). [2 Marks]

ii. Calculate P(X = 5). [2 Marks]

iii. Calculate E[X]. [4 Marks]

iv.  Let Y be a random variable that is equal to 1 if the first two requests are allocated to the same server and equal to 0 otherwise.  Determine whether X  and Y  are  independent  random variables.   Justify  your answer. [3 Marks]

Note: If you need to refer to a Z-table to answer the following questions, you can find one on the following pages.

(c)  A  company  observes  that  the  time  its  customers  spend  on  its website has a mean of 10 minutes and a standard deviation of 2 minutes.  They employ a web designer to improve the website with the goal of increasing the mean time customers spend on the website. After the new design has been implemented, the company claims that the meantime that customers spend on the website has not changed.  We believe that the mean time has actually increased. We wish to carry out a hypothesis test in order to investigate the company’s claim.

i.  Formulate  a  suitable  null  hypothesis  and  a  suitable  alternative  hy- pothesis. [2 Marks]

ii.  Is the test a two-tailed, left-tailed or right-tailed test? [2  Marks]

iii.  If we  sample n  customers and determine that the  mean time they spend on the new website is ¯(x) minutes, what is the formula for cal- culating the test-statistic z from the sample data?  In the formula, use actual values (instead of variables representing unknown values) where known. [2 Marks]

iv. With a significance level of α = 0.05, what is the critical region (that is, the range of values of the test statistic for which we reject the null hypothesis)? [2 Marks]

v.  If α = 0.05, n = 100, and the sample mean is ¯(x) = 10.4 minutes, does the test statistic lie in the critical region?  How should we formulate the result of the hypothesis test? [4  Marks]

vi.  Assume that the time customers spend on the new website actually has a mean of 10.5 minutes with a standard deviation of 3 minutes. If a significance level of α = 0.05 is used for the hypothesis test, how large does the sample size n need to be in order for the statistical power 1 − β of the hypothesis test to be at least 0.95? [5  Marks]

(d)  A company purchases components that have a mean lifetime of 100 hours.

i.  If you  know  nothing  else  about  the  distribution of the component lifetimes, what inequality can you use to calculate an COMP2271 Data Science 2023Java  upper bound on the probability that a newly purchased component has a lifetime of at least 150 hours, and what is the resulting upper bound? [3 Marks]

ii.  Assume you additionally know that the standard deviation of the com- ponent lifetimes is 8 hours.  Calculate a lower bound on the probability that the lifetime of a newly purchased component is between 90 and 110 hours.  State the name of the inequality that you have used in your calculation (if any). [3  Marks]

iii.  Assume now that you know that the lifetime of the components can be modelled very well as a normal distribution with mean μ = 100 and standard deviation σ = 8.  What is the probability that the life- time of a newly purchased component is between 90 and 110 hours? [4 Marks]

Section B Computer Graphics

Question 2

This question relates to the graphics modelling and rendering of a football game environment.  The football  playground  is modelled using a large rectangle with proper texture mapping applied.  There are 22 football players moving on the playground during a game.   Two  movable virtual  cameras are set  up.   One  is called ’global camera’, which is designed to visualise the whole playground. The other one is called ’local camera’, which is designed to visualise a local region of the playground, focusing on a few active football players at any time.

Figure 1: A simplified view of the football game environment.

(a)  Suppose  the global camera  is  enabled  and the  local  camera  is  disabled. Draw a scene graph for the football game environment, which incorporates the football playground, the 22 football players,a football, and the 2 virtual cameras. Assume each football player is modelled by a ’player’ node in the scene graph, so that you are not required to expand the modelling details of each football player. The marks will be given based on:

i.  Correct structure and organisation of the football game environment. [8 Marks]

ii.  Correct transformation operations involved. [6  Marks]

(b)  Suppose  the  local  camera  is  now  used  for  visualising  the football game environment most of the time during a football game.

i.  Analyse  why the scene graph  in  (a)  is  not  optimal  for  supporting efficient rendering. Justify your answer. [6 Marks]

ii.  Construct a new scene graph for the football game that can support efficient rendering with the local camera.  Explain how the new scene graph should be updated during runtime and how the football game should be rendered based on the local camera. [9  Marks]

(c)  Suppose you want to add some spotlights around the football playground to illuminate it.

i.  Suggest what  lighting  method you should apply.   In addition, state how the suggested lighting method can be implemented in WebGL. [7 Marks]

ii.  Assume that the spot lights are all static in terms of their positions and illumination effects during a football game.  Suggest a method to  accelerate  the  rendering  process and describe  how this can  be implemented. [5 Marks]

(d)  To further enhance the football game environment, it is suggested to add a large number of audience (e.g., around 1000 people) sitting around the football playground.

i.  Suggest  a  rendering-efficient  solution  to  implement  the  above  en- hancement. Justify your answer. [5  Marks]

ii.  Based on your answer in (d)(i), describe a solution to support anima- tion of audience, e.g. animating audience applause         

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值