Alyona and a tree 树上差分 +倍增

传送门

题目描述

给定一颗树,每个结点有对应点权,每条边也有对应边权。如果dis<v, u> <= val[u],则说明结点u被结点v所管辖。对于每个结点,输出它管辖的结点数目。

分析

这道题如果我们遍历每一个点并且往上爬,把所有可以被控制的点的答案++,那么大概率是要被t的,所以我们可以去用一种更为巧妙的做法:树上差分

首先我们用倍增去维护维护这颗树上距离这个点1 << i远的点,这样就可以求出某个点所能控制的最远的点是谁,然后用树上差分,就可以构造差分数组,最后往后传递即可

代码

#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <queue>
#include <cstring>
#define debug(x) cout<<#x<<":"<<x<<endl;
#define _CRT_SECURE_NO_WARNINGS
#pragma GCC optimize("Ofast","unroll-loops","omit-frame-pointer","inline")
#pragma GCC option("arch=native","tune=native","no-zero-upper")
#pragma GCC target("avx2")
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> PII;
const int INF = 0x3f3f3f3f;
const int N = 2e5 + 10,M = N * 2;
int h[N],ne[M],e[M],idx;
ll w[N];
int n;
ll d[N];
int a[N];
int ans[N];
int f[N][21];
int num;

void add(int x,int y,int z){
    ne[idx] = h[x],e[idx] = y,w[idx] = z,h[x] = idx++;
}

void dfs(int u){
    for(int i = 1;i <= 20;i++) f[u][i] = f[f[u][i - 1]][i - 1];
    int back = u;
    for(int i = 20;~i;i--){
        if(f[back][i] && d[u] - d[f[back][i]] <= a[u])
            back = f[back][i];
    }
    ans[f[back][0]]--;
    ans[f[u][0]]++;
    for(int i = h[u];~i;i = ne[i]){
        int j = e[i];
        f[j][0] = u;
        d[j] = d[u] + w[i];
        dfs(j);
        ans[u] += ans[j];
    }
}

int main(){
    memset(h,-1,sizeof h);
    scanf("%d",&n);
    for(int i = 1;i <= n;i++) scanf("%d",&a[i]);
    for(int i = 2;i <= n;i++){
        int x,y;
        scanf("%d%d",&x,&y);
        add(x,i,y);
    }
    dfs(1);
    for(int i = 1;i <= n;i++) printf("%d ",ans[i]);
    return 0;
}

/**
*  ┏┓   ┏┓+ +
* ┏┛┻━━━┛┻┓ + +
* ┃       ┃
* ┃   ━   ┃ ++ + + +
*  ████━████+
*  ◥██◤ ◥██◤ +
* ┃   ┻   ┃
* ┃       ┃ + +
* ┗━┓   ┏━┛
*   ┃   ┃ + + + +Code is far away from  
*   ┃   ┃ + bug with the animal protecting
*   ┃    ┗━━━┓ 神兽保佑,代码无bug 
*   ┃        ┣┓
*    ┃        ┏┛
*     ┗┓┓┏━┳┓┏┛ + + + +
*    ┃┫┫ ┃┫┫
*    ┗┻┛ ┗┻┛+ + + +
*/
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值