文献解读:结构方程模型SEM基础,小白看这个就基本够了

本文深入探讨了结构方程模型(SEM)的基本概念,包括其作为统计工具在检验变量关系假设、表示变量间关系及探究因果关系中的作用。SEM的特点在于灵活性和综合性,能处理潜变量和显变量,容忍多重共线性。关键统计指标如卡方、CFI和RMSEA用于评估模型拟合。实施SEM涉及模型设定、识别、参数估计和模型修正。此外,文章介绍了SEM流程、模型参数和拟合指数,并提供了实例和常见图示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

今天要解读的依然是一篇教学文献:The Basics of Structural Equation Modeling,文献作者是Diana Suhr, Ph.D. University of Northern Colorado。

文献链接:
https://www.lexjansen.com/wuss/2006/tutorials/TUT-Suhr.pdf

结构方程模型是:

  • 用来检验显变量与潜变量关系假设的综合性的统计技巧
  • 用来表示,估计或者检验变量间理论关系的技巧
  • 用来探究一系列潜变量和显变量因果关系的统计技巧

我们做结构方程模型主要是为了:

  1. 了解变量之间的共变关系
  2. 解释模型中变量尽可能多的变异

上面给出了结构方程模型比较宏大的概念,具体地我们又可以细分:

一般我们用SEM来解释变量的变异或者变量之间的共变(variation and covariation)。我们用路径分析探究变量之间的因果。我们用验证性因子分析探究潜变量和显变量之间的关系。我们用潜增长曲线模型(LGM)估计纵向数据的初始,变化,结构斜率和方差。上面提到的方法统统都可以归于结构方程模型的特例。

结构方程模型和传统分析方法的不同

首先SEM更加灵活,更加综合。传统方法的模型是提前规定的或者说是默认的,而做结构方程的时候,它对变量关系的限制几乎没有,需要你自己根据理论知识设定变量之间的关系;SEM既包含显变量又有潜变量,而传统的方法之分析显变量;在SEM中我们认为误差是存在的,你甚至可以规定不同变量之间误差的关系,但是传统的方法认为误差是没有的;传统方法能够输出变量间关系的直接的显著性检验结果,而SEM没有这样的结果,我们得用拟合指标来评价模型;结构方程模型可以很好地容忍多重共线性。

SEM的统计指标

chi-square:这个统计量表示预期协方差矩阵和数据的协方差矩阵的差异,卡方越小说明我们的模型和数据越符合。

Comparative Fit Index (CFI):这个指标表示调整了样本量后的ediscrepancy function,这个指标取值1~1,越大越好,建议大于0.9

Root Mean Square Error of Approxim

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

公众号Codewar原创作者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值