今天要解读的依然是一篇教学文献:The Basics of Structural Equation Modeling,文献作者是Diana Suhr, Ph.D. University of Northern Colorado。
文献链接:
https://www.lexjansen.com/wuss/2006/tutorials/TUT-Suhr.pdf
结构方程模型是:
- 用来检验显变量与潜变量关系假设的综合性的统计技巧
- 用来表示,估计或者检验变量间理论关系的技巧
- 用来探究一系列潜变量和显变量因果关系的统计技巧
我们做结构方程模型主要是为了:
- 了解变量之间的共变关系
- 解释模型中变量尽可能多的变异
上面给出了结构方程模型比较宏大的概念,具体地我们又可以细分:
一般我们用SEM来解释变量的变异或者变量之间的共变(variation and covariation)。我们用路径分析探究变量之间的因果。我们用验证性因子分析探究潜变量和显变量之间的关系。我们用潜增长曲线模型(LGM)估计纵向数据的初始,变化,结构斜率和方差。上面提到的方法统统都可以归于结构方程模型的特例。
结构方程模型和传统分析方法的不同
首先SEM更加灵活,更加综合。传统方法的模型是提前规定的或者说是默认的,而做结构方程的时候,它对变量关系的限制几乎没有,需要你自己根据理论知识设定变量之间的关系;SEM既包含显变量又有潜变量,而传统的方法之分析显变量;在SEM中我们认为误差是存在的,你甚至可以规定不同变量之间误差的关系,但是传统的方法认为误差是没有的;传统方法能够输出变量间关系的直接的显著性检验结果,而SEM没有这样的结果,我们得用拟合指标来评价模型;结构方程模型可以很好地容忍多重共线性。
SEM的统计指标
chi-square:这个统计量表示预期协方差矩阵和数据的协方差矩阵的差异,卡方越小说明我们的模型和数据越符合。
Comparative Fit Index (CFI):这个指标表示调整了样本量后的ediscrepancy function,这个指标取值1~1,越大越好,建议大于0.9
Root Mean Square Error of Approxim