看似小小的中介,废了我好多脑细胞,这个东西真的不简单,从7月份有人问我,我多重中介,到现在的纵向数据中介,从一般的回归做法,到结构方程框架下的路径分析法,到反事实框架做法,从中介变量和因变量到是连续变量到中介变量和因变量是分类变量,很浩渺的系统知识,今天开始一点一点给大家写。
今天就和大家一起探讨纵向数据的中介效应检验,一般来讲考虑因果关系的时间先后顺序,纵向数据才是探讨中介的理想数据形式:
In practice, it is strongly recommended to establish mediation with longitudinal data
但是问题也存在,就是说同一波次的中介变量和因变量可能成为纵向中介路径上的混杂,自己会影响自己,自己又会受到中介变量和自变量的影响,这些中介和暴露又会受到前一波数据的影响,怎么说得清呢?况且做了中介我们还需要对每个路径上的效应进行分解,感觉好难哦。
今天就写写这个。
随机效应交叉滞后中介模型引出
首先明白一点,做中介用纵向数据才好,其次明白,交叉滞后是纵向面板数据的常用分析方法:
the CLPM allows time for causes to have their effects, supports stronger inference about the direction of causation in comparison to models using cross-sectional data, and reduces the probable parameter bias that arises when using cross-sectional data.
再记住,纵向数据的中介分析的做法之一就是使用交叉滞后。
但是传统交叉滞后不考虑个体扰动,只拟合全部个体的均值,所以在特定人群中估计系数可能不准(理解方法参考混合模型),因为存在上面的问题,所以一般我们会做一个允许个体扰动的情形下纵向数据的中介模型------multilevel model (MLM):
multilevel model (MLM), which is proposed on the basis of the fact that