预测模型在各个领域都越来越火,今天的分享和之前的临床预测模型背景上有些不同,但方法思路上都是一样的,多了解各个领域的方法应用,视野才不会被局限。
今天试图再用一个实例给到大家一个统一的预测模型的做法框架(R中同样的操作可以有多种多样的实现方法,框架统一尤其重要,不是简单的我做出来就行)。而是要:
eliminate syntactical differences between many of the functions for building and predicting models
数据划分
通常我们的数据是有限的,所以首先第一步就是决定如何使用我们的数据,就这一步来讲都有很多流派。
数据比较少的情况下,一般还是将全部数据都拿来做训练,尽可能使得模型的代表性强一点,但是随之而来的问题就是没有样本外验证。上文写机器学习的时候提到,样本外验证是模型评估的重要一步,所以一般还是会划分数据。个人意见:好多同学就200多个数据,就别去划分数据集了,全用吧,保证下模型效度。
我现在手上有数据如下:
这是一个有4335个观测1579个变量的数据集,我现在要对其切分为训练集和测试集,代码如下:
inTrain <- createDataPartition(mutagen, p = 3/4, list = FALSE)
trainDescr <- descr[inTrain,]
testDescr <- descr[-inTrain,]
trainClass <- mutagen[inTra