R数据分析:用R建立预测模型

本文详细介绍了一个通用预测模型的构建流程,包括数据准备、特征选择、模型训练与调参、预测及评估等内容,适用于多种机器学习任务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

预测模型在各个领域都越来越火,今天的分享和之前的临床预测模型背景上有些不同,但方法思路上都是一样的,多了解各个领域的方法应用,视野才不会被局限。

今天试图再用一个实例给到大家一个统一的预测模型的做法框架(R中同样的操作可以有多种多样的实现方法,框架统一尤其重要,不是简单的我做出来就行)。而是要:

eliminate syntactical differences between many of the functions for building and predicting models

数据划分

通常我们的数据是有限的,所以首先第一步就是决定如何使用我们的数据,就这一步来讲都有很多流派。

数据比较少的情况下,一般还是将全部数据都拿来做训练,尽可能使得模型的代表性强一点,但是随之而来的问题就是没有样本外验证。上文写机器学习的时候提到,样本外验证是模型评估的重要一步,所以一般还是会划分数据。个人意见:好多同学就200多个数据,就别去划分数据集了,全用吧,保证下模型效度。

我现在手上有数据如下:

这是一个有4335个观测1579个变量的数据集,我现在要对其切分为训练集和测试集,代码如下:

inTrain <- createDataPartition(mutagen, p = 3/4, list = FALSE)
trainDescr <- descr[inTrain,]
testDescr  <- descr[-inTrain,]

trainClass <- mutagen[inTra
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

公众号Codewar原创作者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值