列线图作为一个非常简单明了的临床辅助决策工具,在临床中用的(发文章的)还是比较多的,尤其是肿瘤预后:
Nomograms are widely used for cancer prognosis, primarily because of their ability to reduce statistical predictive models into a single numerical estimate of the probability of an event, such as death or recurrence, that is tailored to the profile of an individual patient.
找个公开数据库做生存分析出个列线图,然后出个文章是很多临床同学可以依赖的较容易的实现路径,之前有给大家介绍过列线图,今天开始再给大家比较详细地写写生存分析列线图系列,希望可以对大家有帮助。
理解列线图
要弄明白生存分析的列线图的出图逻辑。我们首先来回顾下cox模型究竟是拟合是什么东西,看下图:
在基础风险确定后,乘上以e为底数的指数函数(我们关心的协变量的线性部分是在指数上)就可以得到风险函数(为什么能这么做就涉及到比例风险假设)。通过线性部分的指数函数和基础风险我们cox模型最终得到的是hazard function。
通过hazard function我们可以得到hazard rate,但是对于临床应用来讲,临床医师关心的东西更直观,他们关心的是具体协变量条件下个体的生存概率,画出的列线图常常如下面所示:
列线图中的结局常常是某个时间点的生存概率&#x