OUC暑期培训(深度学习)——第五周学习记录:ShuffleNet & EfficientNet & 迁移学习

第五周学习:ShuffleNet & EfficientNet & 迁移学习

 

Part 1 视频学习

1、ShuffleNet V1

ShuffleNet和MobileNet一样想,应用于移动端,其主要有两个亮点,一个是提出了Channel Shuffle的思想,另一个是使用的全是GConv(分组卷积)和DWConv。

(1)Channel Shuffle

如上图所示(a),对普通的GConv,其虽然能减少参数参与计算量,但GConv不同组之间信息没有交流 。ShuffleNet的核心设计理念是对不同的channels进行shuffle来解决GConv带来的弊端。

在我们进行一次组卷积之前,我们先对每一个组内的特征图进行划分,划分数等于分组数,然后再以此重新组合,即完成了以此Channel Shuffle。

FLOPS:全大写,是floating point operations per second的缩写,指每秒浮点运算次数,可以理解为计算的速度。是衡量硬件性能的一个指标。(硬件)

FLOPs:s小写,是floating point operations的缩写(s表复数),指浮点运算数,理解为计算量。可以用来衡量算法/模型的复杂度。(模型)在论文中常用GFLOPs(1 GFLOPs=10^9 FLOPs)

2、ShuffleNet V2

在ShuffleNet V2中作者提出计算复杂度不能只看FLOPs,并提出了4条设计高效网络准则,基于准则,又提出了新的block设计。

FLOPs并不是衡量运算量的直接指标,速度才是直接指标,除了FLOPs之外还有诸如MAC(memory access cost)、degree of parallelism等因素会影响速度。

接下来作者提出了四条关于如何设计一个高效的网络的建议:

 ①当卷积层的输入特征矩阵与输出特征矩阵相等时MAC最小(保持FLOPs不变时)

采用均值不等式能得到式子MAC\geq 2\sqrt {hwB}+\frac{B}{hw}\\以及B = hwc_1c_2

证明如下:

作者的实验对比如下:

 ②当GConv的groups增大时(保持FLOPs不变时),MAC也会增大

MAC = hw(c_1 + c_2) + \frac{c_1c_2}{g} = hwc_1+\frac{Bg}{c_1}+\frac{B}{hw}

其中B=hwc_1c_2/g

实验对比:

③网络设计的碎片化程度越高,速度越慢。 

这里的碎片化可以理解成分支,可以是并联也可以是串联,如下所示

实验对比如下:

 

前三行对应的是上图中(a)、(b)、(c)三个串联结构,最后两行对应的是(d)、(e)这种并行情况。

④Element-wise操作带来的影响是不可忽略的。(包括激活ReLu和相加的操作)

 Element-wise操作包括ReLU,AddTensor,AddBias等,他们FLOPs很小,但是MAC大

总结:①使用使用比较平衡的卷积(输入和输出的比值尽量接近1)

②注意分组卷积的运算成本

③降低网络的碎片化程度

④减少element-wise操作的使用

下图是ShuffleNet V1&V2的步长分别为1和2时的block 

3、EfficientNet

Part 2 代码练习

1、使用VGG进行猫狗大战

(1)调用库

import numpy as np
import matplotlib.pyplot as plt
import os
import torch
import torch.nn as nn
import torchvision
from torchvision import models,transforms,datasets
import time
import json


# 判断是否存在GPU设备
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print('Using gpu: %s ' % torch.cuda.is_available())

(2)加载数据并处理

! wget http://fenggao-image.stor.sinaapp.com/dogscats.zip
! unzip dogscats.zip


normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])

vgg_format = transforms.Compose([
                transforms.CenterCrop(224),
                transforms.ToTensor(),
                normalize,
            ])

data_dir = './dogscats'

dsets = {x: datasets.ImageFolder(os.path.join(data_dir, x), vgg_format)
         for x in ['train', 'valid']}

dset_sizes = {x: len(dsets[x]) for x in ['train', 'valid']}
dset_classes = dsets['train'].classes

# 通过下面代码可以查看 dsets 的一些属性

print(dsets['train'].classes)
print(dsets['train'].class_to_idx)
print(dsets['train'].imgs[:5])
print('dset_sizes: ', dset_sizes)

 

loader_train = torch.utils.data.DataLoader(dsets['train'], batch_size=64, shuffle=True, num_workers=6)
loader_valid = torch.utils.data.DataLoader(dsets['valid'], batch_size=5, shuffle=False, num_workers=6)


'''
valid 数据一共有2000张图,每个batch是5张,因此,下面进行遍历一共会输出到 400
同时,把第一个 batch 保存到 inputs_try, labels_try,分别查看
'''
count = 1
for data in loader_valid:
    print(count, end='\n')
    if count == 1:
        inputs_try,labels_try = data
    count +=1

print(labels_try)
print(inputs_try.shape)

# 显示图片的小程序

def imshow(inp, title=None):
#   Imshow for Tensor.
    inp = inp.numpy().transpose((1, 2, 0))
    mean = np.array([0.485, 0.456, 0.406])
    std = np.array([0.229, 0.224, 0.225])
    inp = np.clip(std * inp + mean, 0,1)
    plt.imshow(inp)
    if title is not None:
        plt.title(title)
    plt.pause(0.001)  # pause a bit so that plots are updated


# 显示 labels_try 的5张图片,即valid里第一个batch的5张图片
out = torchvision.utils.make_grid(inputs_try)
imshow(out, title=[dset_classes[x] for x in labels_try])

(3)创建VGG网络 

torchvision中集成了很多在 ImageNet (120万张训练数据) 上预训练好的通用的CNN模型,可以直接下载使用。

在此,我们直接使用预训练好的 VGG 模型。同时,为了展示 VGG 模型对本数据的预测结果,还下载了 ImageNet 1000 个类的 JSON 文件。

在这部分代码中,对输入的5个图片利用VGG模型进行预测,同时,使用softmax对结果进行处理,随后展示了识别结果。可以看到,识别结果是比较非常准确的。


!wget https://s3.amazonaws.com/deep-learning-models/image-models/imagenet_class_index.json

model_vgg = models.vgg16(pretrained=True)

with open('./imagenet_class_index.json') as f:
    class_dict = json.load(f)
dic_imagenet = [class_dict[str(i)][1] for i in range(len(class_dict))]

inputs_try , labels_try = inputs_try.to(device), labels_try.to(device)
model_vgg = model_vgg.to(device)

outputs_try = model_vgg(inputs_try)

print(outputs_try)
print(outputs_try.shape)

'''
可以看到结果为5行,1000列的数据,每一列代表对每一种目标识别的结果。
但是我也可以观察到,结果非常奇葩,有负数,有正数,
为了将VGG网络输出的结果转化为对每一类的预测概率,我们把结果输入到 Softmax 函数
'''
m_softm = nn.Softmax(dim=1)
probs = m_softm(outputs_try)
vals_try,pred_try = torch.max(probs,dim=1)

print( 'prob sum: ', torch.sum(probs,1))
print( 'vals_try: ', vals_try)
print( 'pred_try: ', pred_try)

print([dic_imagenet[i] for i in pred_try.data])
imshow(torchvision.utils.make_grid(inputs_try.data.cpu()), 
       title=[dset_classes[x] for x in labels_try.data.cpu()])

(4)修改最后一层,冻结前面层的参数

print(model_vgg)

model_vgg_new = model_vgg;

for param in model_vgg_new.parameters():
    param.requires_grad = False
model_vgg_new.classifier._modules['6'] = nn.Linear(4096, 2)
model_vgg_new.classifier._modules['7'] = torch.nn.LogSoftmax(dim = 1)

model_vgg_new = model_vgg_new.to(device)

print(model_vgg_new.classifier)

(5)对模型进行训练并测试连接层

'''
第一步:创建损失函数和优化器

损失函数 NLLLoss() 的 输入 是一个对数概率向量和一个目标标签. 
它不会为我们计算对数概率,适合最后一层是log_softmax()的网络. 
'''
criterion = nn.NLLLoss()

# 学习率
lr = 0.001

# 随机梯度下降
optimizer_vgg = torch.optim.SGD(model_vgg_new.classifier[6].parameters(),lr = lr)

'''
第二步:训练模型
'''

def train_model(model,dataloader,size,epochs=1,optimizer=None):
    model.train()
    
    for epoch in range(epochs):
        running_loss = 0.0
        running_corrects = 0
        count = 0
        for inputs,classes in dataloader:
            inputs = inputs.to(device)
            classes = classes.to(device)
            outputs = model(inputs)
            loss = criterion(outputs,classes)           
            optimizer = optimizer
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            _,preds = torch.max(outputs.data,1)
            # statistics
            running_loss += loss.data.item()
            running_corrects += torch.sum(preds == classes.data)
            count += len(inputs)
            print('Training: No. ', count, ' process ... total: ', size)
        epoch_loss = running_loss / size
        epoch_acc = running_corrects.data.item() / size
        print('Loss: {:.4f} Acc: {:.4f}'.format(
                     epoch_loss, epoch_acc))
        
        
# 模型训练
train_model(model_vgg_new,loader_train,size=dset_sizes['train'], epochs=1, 
            optimizer=optimizer_vgg)  

训练结果:

def test_model(model,dataloader,size):
    model.eval()
    predictions = np.zeros(size)
    all_classes = np.zeros(size)
    all_proba = np.zeros((size,2))
    i = 0
    running_loss = 0.0
    running_corrects = 0
    for inputs,classes in dataloader:
        inputs = inputs.to(device)
        classes = classes.to(device)
        outputs = model(inputs)
        loss = criterion(outputs,classes)           
        _,preds = torch.max(outputs.data,1)
        # statistics
        running_loss += loss.data.item()
        running_corrects += torch.sum(preds == classes.data)
        predictions[i:i+len(classes)] = preds.to('cpu').numpy()
        all_classes[i:i+len(classes)] = classes.to('cpu').numpy()
        all_proba[i:i+len(classes),:] = outputs.data.to('cpu').numpy()
        i += len(classes)
        print('Testing: No. ', i, ' process ... total: ', size)        
    epoch_loss = running_loss / size
    epoch_acc = running_corrects.data.item() / size
    print('Loss: {:.4f} Acc: {:.4f}'.format(
                     epoch_loss, epoch_acc))
    return predictions, all_proba, all_classes
  
predictions, all_proba, all_classes = test_model(model_vgg_new,loader_valid,size=dset_sizes['valid'])
  

 测试结果:

(6)可视化模型预测结果:

# 单次可视化显示的图片个数
n_view = 8
correct = np.where(predictions==all_classes)[0]
from numpy.random import random, permutation
idx = permutation(correct)[:n_view]
print('random correct idx: ', idx)
loader_correct = torch.utils.data.DataLoader([dsets['valid'][x] for x in idx],
                  batch_size = n_view,shuffle=True)
for data in loader_correct:
    inputs_cor,labels_cor = data
# Make a grid from batch
out = torchvision.utils.make_grid(inputs_cor)
imshow(out, title=[l.item() for l in labels_cor])

 

 

在PyTorch中,模仿学习是指通过观察和模仿来学习任务。这种学习方法常用于强化学习中,其中智能体通过观察其他智能体的行为并模仿其行为来学习如何执行特定的任务。 PyTorch提供了丰富的张量类型用于存储和操作数据。根据引用,PyTorch支持多种数据类型,包括torch.float32、torch.float64、torch.float16、torch.uint8、torch.int8、torch.int16、torch.int32和torch.int64。这些数据类型具有不同的精度和表示范围,可以根据具体任务的需求选择适当的数据类型。 在PyTorch中,有两种常用的创建张量的方法,即使用torch.Tensor()和torch.tensor()。根据引用和引用,torch.Tensor()是一个类,而torch.tensor()是一个函数。torch.Tensor()会将数组转换为默认的tensor类型,而torch.tensor()可以根据传入的数据自动推断出tensor的类型。 要进行模仿学习,可以使用torch.tensor()创建张量来存储观察到的行为数据,并使用torch.Tensor()创建张量来存储模仿学习的结果。根据具体的任务和数据类型需求,选择适当的数据类型和创建方法来实现模仿学习。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [OUC暑期培训深度学习)——第一学习记录深度学习和pytorch基础](https://blog.csdn.net/tm_operao/article/details/125758097)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值