OUC暑期培训(深度学习)——第一周学习记录:深度学习和pytorch基础

 第一周学习:深度学习和pytorch基础

目录

第一周学习:深度学习和pytorch基础

Part 1:视频学习:

1. 绪论:

2. 深度学习概述:

Part 2:代码练习:

1. pytorch基础练习:

2. 螺旋数据分类:

Part3 遇到的问题


Part 1:视频学习:

1. 绪论:

1.1 人工智能

人工智能:使一部机器像人一样进行感知、认知、决策、执行的人工程序或系统

人工智能的三个层面:计算智能(快速计算、记忆存储;代表:深蓝:暴力穷举)、感知智能(模仿听觉、视觉、触觉等人的感知能力,目前人工智能阶段)、认知智能(逻辑推理、知识理解、决策思考)

人工智能(领域、目标)>机器学习(实现目标的一类方法)>深度学习(机器学习这一类方法中的一小点)


1.2 机器学习与专家系统对比

 机器学习两种方向:逻辑演绎vs归纳总结

知识工程/专家系统 vs 机器学习

知识工程/专家系统:根据专家定义的知识和经验,进行推理和判断,从而模拟人类专家的决策过程来解决问题。即需专业人员提前人工定义规则。

机器学习:通过提前标注好的训练样本,由机器自动训练出模型确定某准则,从而通过该准则解决问题。


1.3 机器学习

机器学习的应用领域:计算机视觉、语音技术、自然语言处理 

机器学习定义:最常用定义:计算机系统能够利用经验提高自身的性能

                         可操作定义:机器学习本质是一个基于经验数据的函数估计问题

                         统计学定义:提取重要模式、趋势,并理解数据,即从数据中学习

 是否用机器学习:问题规模是否很大->规则是否复杂->是否有足够的数据->是否有有意义的模式去提取->是否是解析解问题

机器学习三要素:模型、策略、方法(机器学习主要解决前两部分问题)

 模型分类:

参数模型非参数模型
优点数据需求量少、训练迅速

对数据适应性强,

可拟合不同的函数形式

缺点

模型复杂度有限,

与真实目标函数拟合度小

数据需求大、容易过拟合
生成模型
优点

提供更多信息(建模边缘分布->采样生成样本)

样本量大时,更快收敛到真实分布
支持复杂训练情况(无监督训练、存在隐变量时)

缺点

数据需求大

预测类问题准确率通常不如判别模型


1.4 机器学习、深度学习、神经网络的发展变革

传统机器学习 VS 深度学习

机器学习、深度学习历史:单层感知器算法(无法处理异或问题)-低潮-BP算法-第一次热潮-支持向量机模型-低潮-深度学习-第二次高潮

神经网络结构的发展:


1.5 深度学习的不能

深度学习三要素:大数据、算法、计算力

深度学习的10点挑战:

(1) is data hungry(需要大数据训练)
(2) is shallow & has limited capacity for transfer(较浅且不能充分迁移)
(3) has no natural way to deal with hierarchical structure(没有自然化的能力去处理层次结构)
(4) has struggled with open-ended inference(一直想解决开放式推理问题而不能)
(5) is not sufficiently transparent(不够有效透明,神经网络知识表达是黑箱)
(6) has not been well integrated with prior knowledge(不能很好地将先验知识结合到算法中)
(7) cannot inherently distinguish causation from correlation(无法从本质上区分因果关系和相关性)
(8) presumes a largely stable world, in ways that may be problematic(只依赖于特定的环境假设,而实际可能实时变化)
(9)its answer often cannot be fully trusted(由于是对数据基于概率的逼近拟合,结果不能完全使人信服)
(10)is difficult to engineer with(不能像其他程序一样对内部结构进行实时debug)

深度学习的6点不能

(1)算法输出不稳定,容易被“攻击”(噪声等)

(2)模型复杂度高,难以纠错和调试

(3)模型层级复合度高,参数不透明(感受野、卷积核复合等)

(4)端到端训练方式对数据依赖性强,模型增量性差(当样本数据量小的时候,深度学习无法体现强大拟合能力;不同问题数据不同标注)

(5)专注直观感知类问题,对开放性推理问题无能为力

(6)人类知识无法有效引入进行监督,机器偏见难以避免(数据也有偏见)

联结主义+符号主义



2. 深度学习概述:

2.1 MP神经元及单层感知器

MP神经元结构:

其中输出函数中f为激活函数

激活函数举例:

特点:

 M-P神经元的权重预先设置,无法学习;而单层感知器是首个可以学习的人工神经网络。

但单层感知器不能解决最简单的非线性问题即异或问题:

 要解决异或问题需通过多个单层感知器构成多层感知器。


2.2 万有逼近定理

(1)如果一个隐层包含足够多的神经元,三层前馈神经网络(输入-隐层-输出)即单隐层神经网络能以任意精度逼近任意预定的连续函数。

(2)当隐层足够宽时,双隐层感知器(输入-隐层1-隐层2-输出)可以逼近任意非连续函数:可以解决任何复杂的分类问题。

原因在于:

对每一层的数学公式y=a(W·x+b),都完成了一个输入到输出的空间变换,其中:

W·x完成的是升维/降维、放大/缩小及旋转操作,而b完成的是平移操作,二者都是线性转换,而激活函数a则完成的是弯曲操作,实现了非线性转换。

增加节点数:增加维度,即增加线性转换能力。

增加层数:增加激活函数的次数,即增加非线性转换次数。


2.3 多层神经网络

在神经元总数相当的情况下,增加网络深度可以比增加宽度带来更强的网络表示能力:产生更多的线性区域

 据上式可知深度和宽度对函数复杂度的贡献是不同的,深度的贡献是指数增长的,而宽度的贡献是线性的。

但当层数过多,反而会出现长时间训练也训练不出的情况,究其原因是因为出现了梯度消失

为理解出现上述情况的原因,我们首先来了解多层神经网络进行参数学习的过程:

前馈神经网络(以三层为例):

前一层的输出作为后一层的输入通过线性变化和激活输出,最终获得输出结果y,而y与真实值Y之间存在损失值L。而参数沿负梯度方向更新可以使L下降 ,这也即梯度下降法。

我们定义残差:

则红色部分即反向传播部分,将残差写成与前馈类似的样子,则损失函数在参数方向的偏导也就如下

Sigmoid激活函数的导数为:

 很容易落到饱和区内导致该导数非常小,接近于0。

导致在反向传播过程中该梯度变为0,也即梯度消失,导致前面隐层不能得到有效更新。

自编码器,受限玻尔兹曼机




Part 2:代码练习:

1. pytorch基础练习:

PyTorch是一个python库,它主要提供了两个高级功能:1、GPU加速的张量计算 2、构建在反向自动求导系统上的深度神经网络

(1)定义数据:一般定义数据使用torch.Tensor , tensor的意思是张量,是数字各种形式的总称;

Tensor支持各种各样类型的数据,包括:

torch.float32, torch.float64, torch.float16, torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64 

创建Tensor有多种方法,包括:ones(1), zeros(0), eye(单位矩阵), arange, linspace(从start到end,均匀切分成steps份), rand, randn(标准分布), normal(正态分布), uniform, randperm(随机排列)

import torch

# 可以是一个数
x = torch.tensor(710)
# 可以是一维数组(向量)
y = torch.tensor([1,2,3,4,5,6])
# 可以是二维数组(矩阵)
z = torch.ones(2,3)
# 可以是任意维度的数组(张量)
m = torch.zeros(2,3,4)
print(x)
print(y)
print(z)
print(m)

 (2)定义操作:

凡是用Tensor进行各种运算的,都是Function

最终,还是需要用Tensor来进行计算的,计算无非是

  • 基本运算,加减乘除,求幂求余
  • 布尔运算,大于小于,最大最小
  • 线性运算,矩阵乘法,求模,求行列式

基本运算包括: abs/sqrt/div/exp/fmod/pow ,及一些三角函数 cos/ sin/ asin/ atan2/ cosh,及 ceil/round/floor/trunc 等

布尔运算包括: gt/lt/ge/le/eq/ne,topk, sort, max/min

线性计算包括: trace, diag, mm/bmm,t,dot/cross,inverse,svd 等

import torch
from matplotlib import pyplot as plt
plt.hist(torch.randn(100).numpy(), 100);

import torch
from matplotlib import pyplot as plt
plt.hist(torch.randn(10**9).numpy(), 100);

2. 螺旋数据分类:

尝试解决螺旋分类 sprial classification 问题:

先初始化数据并可视化出来:

X 可以理解为特征矩阵,Y可以理解为样本标签。 结合代码可以看到,X的为一个 NxC 行, D 列的矩阵。C 类样本,每类样本是 N个,所以是 N*C 行。每个样本的特征维度是2,所以是 2列。

在 python 中,调用 zeros 类似的函数,第一个参数是 y方向的,即矩阵的行;第二个参数是 x方向的,即矩阵的列

!wget https://raw.githubusercontent.com/Atcold/pytorch-Deep-Learning/master/res/plot_lib.py
import random
import torch
from torch import nn, optim
import math
from IPython import display
from plot_lib import plot_data, plot_model, set_default

# 因为colab是支持GPU的,torch 将在 GPU 上运行
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print('device: ', device)

# 初始化随机数种子。神经网络的参数都是随机初始化的,
# 不同的初始化参数往往会导致不同的结果,当得到比较好的结果时我们通常希望这个结果是可以复现的,
# 因此,在pytorch中,通过设置随机数种子也可以达到这个目的
seed = 12345
random.seed(seed)
torch.manual_seed(seed)

N = 1000  # 每类样本的数量
D = 2  # 每个样本的特征维度
C = 3  # 样本的类别
H = 100  # 神经网络里隐层单元的数量
X = torch.zeros(N * C, D).to(device)
Y = torch.zeros(N * C, dtype=torch.long).to(device)
for c in range(C):
    index = 0
    t = torch.linspace(0, 1, N) # 在[0,1]间均匀的取10000个数,赋给t
    # 下面的代码不用理解太多,总之是根据公式计算出三类样本(可以构成螺旋形)
    # torch.randn(N) 是得到 N 个均值为0,方差为 1 的一组随机数,注意要和 rand 区分开
    inner_var = torch.linspace( (2*math.pi/C)*c, (2*math.pi/C)*(2+c), N) + torch.randn(N) * 0.2
    
    # 每个样本的(x,y)坐标都保存在 X 里
    # Y 里存储的是样本的类别,分别为 [0, 1, 2]
    for ix in range(N * c, N * (c + 1)):
        X[ix] = t[index] * torch.FloatTensor((math.sin(inner_var[index]), math.cos(inner_var[index])))
        Y[ix] = c
        index += 1

print("Shapes:")
print("X:", X.size())
print("Y:", Y.size())
plot_data(X, Y)

分别构建线性模型和两层神经网络进行分类:

1、线性模型:

learning_rate = 1e-3
lambda_l2 = 1e-5

# nn 包用来创建线性模型
# 每一个线性模型都包含 weight 和 bias
model = nn.Sequential(
    nn.Linear(D, H),
    nn.Linear(H, C)
)
model.to(device) # 把模型放到GPU上

# nn 包含多种不同的损失函数,这里使用的是交叉熵(cross entropy loss)损失函数
criterion = torch.nn.CrossEntropyLoss()

# 这里使用 optim 包进行随机梯度下降(stochastic gradient descent)优化
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate, weight_decay=lambda_l2)

# 开始训练
for t in range(1000):
    # 把数据输入模型,得到预测结果
    y_pred = model(X)
    # 计算损失和准确率
    loss = criterion(y_pred, Y)
    score, predicted = torch.max(y_pred, 1)
    acc = (Y == predicted).sum().float() / len(Y)
    print('[EPOCH]: %i, [LOSS]: %.6f, [ACCURACY]: %.3f' % (t, loss.item(), acc))
    display.clear_output(wait=True)

    # 反向传播前把梯度置 0 
    optimizer.zero_grad()
    # 反向传播优化 
    loss.backward()
    # 更新全部参数
    optimizer.step()
print(y_pred.shape)
print(y_pred[10, :])
print(score[10])
print(predicted[10])
# Plot trained model
print(model)
plot_model(X, Y, model)

上面使用 print(model) 把模型输出,可以看到有两层:

  • 第一层输入为 2(因为特征维度为主2),输出为 100;
  • 第二层输入为 100 (上一层的输出),输出为 3(类别数)

线性模型很难对非线性数据分布问题分类。

2、两层神经网络:

learning_rate = 1e-3
lambda_l2 = 1e-5

# 这里可以看到,和上面模型不同的是,在两层之间加入了一个 ReLU 激活函数
model = nn.Sequential(
    nn.Linear(D, H),
    nn.ReLU(),
    nn.Linear(H, C)
)
model.to(device)

# 下面的代码和之前是完全一样的,这里不过多叙述
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate, weight_decay=lambda_l2) # built-in L2

# 训练模型,和之前的代码是完全一样的
for t in range(1000):
    y_pred = model(X)
    loss = criterion(y_pred, Y)
    score, predicted = torch.max(y_pred, 1)
    acc = ((Y == predicted).sum().float() / len(Y))
    print("[EPOCH]: %i, [LOSS]: %.6f, [ACCURACY]: %.3f" % (t, loss.item(), acc))
    display.clear_output(wait=True)
    
    # zero the gradients before running the backward pass.
    optimizer.zero_grad()
    # Backward pass to compute the gradient
    loss.backward()
    # Update params
    optimizer.step()
# Plot trained model
print(model)
plot_model(X, Y, model)

可以看到在两层神经网络里加入 ReLU 激活函数以后,分类的准确率得到了显著提高。

主要是激活函数提供了非线性变换。

改变激活函数:

(1)使用sigmoid函数,输出结果:

(2)使用Tanh函数:

 (3)使用LeakyReLU函数:

ReLU、Sigmoid、Tanh、LeakyReLU准确率分别为:92.6%、51.9%、85.1%和95.9, LeakyReLU准确率最高。



Part3 遇到的问题

1、创建tensor时,虽然torch.Tensor也能通torch.tensor一样创建,但是两者创建的数据类型不同:

import torch

x = torch.Tensor([1,2,3])
print(x)
print(x.dtype)
y = torch.tensor([1,2,3])
print(y)
print(y.dtype)

输出为:

 原因查得:首先torch.Tensor()是类,而torch.tensor()是函数,其次,torch.Tensor()会将数组转化为tensor默认的类型。

另外查得还有torch.from_numpy(),torch.as_tensor()的创建tensor形式,且如果用数组赋值给tensor的话,这两种创建方式与原数组共享内存,更为节省。但torch.as_tensor()既能接受numpy数组,也能接收list,而torch.from_numpy()只能接收numpy数组。

 2、在进行每一次的反向传播前要进行梯度清零。

知乎上说是因为梯度在计算时会进行累加,从而扩大batchsize,降低显存的使用要求。这里不是很明白

3、Sigmoid因为导数存在饱和区所以在多层神经网络中随着层数增多,准确率会降低,但是这次进行螺旋分类的为两层神经网络,为何Sigmoid表现这么差呢?

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
PyTorch中,模仿学习是指通过观察和模仿来学习任务。这种学习方法常用于强化学习中,其中智能体通过观察其他智能体的为并模仿其为来学习如何执特定的任务。 PyTorch提供了丰富的张量类型用于存储和操作数据。根据引用,PyTorch支持多种数据类型,包括torch.float32、torch.float64、torch.float16、torch.uint8、torch.int8、torch.int16、torch.int32和torch.int64。这些数据类型具有不同的精度和表示范围,可以根据具体任务的需求选择适当的数据类型。 在PyTorch中,有两种常用的创建张量的方法,即使用torch.Tensor()和torch.tensor()。根据引用和引用,torch.Tensor()是一个类,而torch.tensor()是一个函数。torch.Tensor()会将数组转换为默认的tensor类型,而torch.tensor()可以根据传入的数据自动推断出tensor的类型。 要进模仿学习,可以使用torch.tensor()创建张量来存储观察到的为数据,并使用torch.Tensor()创建张量来存储模仿学习的结果。根据具体的任务和数据类型需求,选择适当的数据类型和创建方法来实现模仿学习。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [OUC暑期培训深度学习)——第一周学习记录深度学习pytorch基础](https://blog.csdn.net/tm_operao/article/details/125758097)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值