自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

数据派THU

发布清华大学数据科学相关科研动态、教学成果及线下活动

  • 博客(5042)
  • 收藏
  • 关注

转载 收集30GB、近20万对训练样本,复旦大学团队发布UniFMIR:用AI突破显微成像极限...

本文约3500字,建议阅读7分钟5大任务性能提升。复旦大学计算机科学技术学院研究团队,提出了跨任务、多维度图像增强基础 AI 模型 UniFMIR,实现了对现有荧光显微成像极限的突破,并为荧光显微镜图像增强提供了一个通用的解决方案。荧光显微镜是生命科学领域不可或缺的重要研究工具,其原理是以紫外线为光源, 照射被检物体使之发出荧光, 然后在显微镜下观察物体的形状及其所在位置,可用于研究细胞内物质的...

2024-05-27 17:01:37 3

转载 结合量子特征、2万个分子动力学模拟,新蛋白-配体复合物ML数据集,登Nature子刊...

来源:专知本文约1200字,建议阅读5分钟该团队提供了机器学习(ML)基线模型的示例,证明通过使用该数据集可以提高准确性。大型语言模型极大地增强了科学家理解生物学和化学的能力,但基于结构的药物发现、量子化学和结构生物学的可靠方法仍然很少。大型语言模型迫切需要精确的生物分子-配体相互作用数据集。为了解决这个问题,德国亥姆霍兹慕尼黑研究中心结构生物学所和慕尼黑工业大学的研究人员,提出了 MISAT...

2024-05-27 17:01:37 3

转载 Transformers 加速的一些常用技巧

来源:DeepHub IMBA本文约1800字,建议阅读5分钟本文带你总结一些常用的加速策略。Transformers 是一个强大的架构,但模型因其采用的自注意力机制,虽然能够有效地处理序列数据并捕获长距离依赖关系,但同时也容易导致在训练过程中出现OOM(Out of Memory,内存不足)或者达到GPU的运行时限制。主要是因为:参数数量庞大:Transformer模型通常包含大量的参数,尤...

2024-05-27 17:01:37 4

转载 【CMU博士论文】稀疏视角三维重建

来源:专知本文为论文介绍,建议阅读5分钟这篇论文提出了稀疏视角三维重建技术,自动估计相机姿态并从少于10张图像中重建野外三维物体。从图像中重建三维场景和物体一直是计算机视觉的长期目标。近年来,我们在这方面取得了巨大进展,能够从任何视点生成近乎逼真的渲染。然而,现有方法通常依赖大量输入图像(通常为50-100张)来计算相机姿态并确保视图一致性。这一限制减少了这些方法的适用性,因为获取100张高质量...

2024-05-26 17:01:46 6

转载 时间序列预测:探索性数据分析和特征工程的实用指南

来源:Deephub Imba本文约6200字,建议阅读10分钟本文将总结一个时间序列数据的分析模板,可以总结和突出数据集的最重要特征。时间序列分析是数据科学和机器学习领域最广泛的主题之一:无论是预测金融事件、能源消耗、产品销售还是股票市场趋势,这一领域一直是企业非常感兴趣的领域。随着机器学习模型的不断进步,使除了传统的统计预测方法(如回归模型、ARIMA模型、指数平滑)外,与机器学习(如基于...

2024-05-26 17:01:46 6

转载 扩散模型的多元化应用:药物发现、文本生成、时间序列预测等

来源:DeepHub IMBA本文约2400字,建议阅读5分钟本文带你研究一下扩散模型的多元化应用。AlphaFold3 是 DeepMind 开发的一款蛋白质结构预测软件,它在AlphaFold2的基础上进行了改进。其中最主要的一个改进就是引入了扩散模型,这使得扩散模型不仅仅可以应用于文生图,其实扩散模型早已经在各个领域中都又所发展,今天我们就来研究一下扩散模型的多元化应用。扩散模型我们先从...

2024-05-26 17:01:46 11

转载 可信赖图神经网络综述!图的因果学习!

本文约9000字,建议阅读10+分钟本文从因果角度分析了GNN的可靠性风险,并介绍了六组技术以深入了解潜在的因果机制并实现可靠性。1 介绍本文综述了图神经网络(GNN)在图挖掘应用中的最新进展,并强调了其在低维表示中保留丰富知识的能力。然而,GNN在可靠性方面存在挑战,包括OOD泛化能力、公平性和可解释性。为了解决这些问题,研究人员开始将因果学习纳入可信赖图神经网络(TGNN)的开发中。本文从因...

2024-05-25 17:01:44 10

转载 【WWW2024教程】大型语言模型驱动智能体,附slides

来源:专知本文约2000字,建议阅读5分钟在本教程中,我们将介绍在各种网络应用中使用LLM驱动的智能体的前沿技术,如网络挖掘、社交网络、推荐系统和对话系统。WWW(The Web Conference)由万维网发明人、2016 年度图灵奖获得者 Tim Berners-Lee 于 1992 年发起并创办,是互联网系统与应用领域的顶级学术会议,也是中国计算机学会CCF推荐的A类学术会议,WWW-...

2024-05-25 17:01:44 15

转载 ATFNet:长时间序列预测的自适应时频集成网络

来源:Deephub Imba本文约1300字,建议阅读5分钟本文介绍了ATFNet深度学习模型。‍‍‍‍‍‍‍‍ATFNet是一个深度学习模型,它结合了时间域和频域模块来捕获时间序列数据中的依赖关系。引入了一种新的加权机制来调整周期性的权重,增强了离散傅立叶变换,并包括一个复杂关系识别的注意力机制,在长期时间序列预测中优于当前方法(每个模型都这么说)。这是4月发布在arxiv上的论文,还包含...

2024-05-25 17:01:44 17

转载 图神经网络入门示例:使用PyTorch Geometric 进行节点分类

来源:DeepHub IMBA本文约3500字,建议阅读10分钟本文将一个CSV文件转换为数据对象,然后使用PyTorch为节点分类任务构建基于图的神经网络。基于图的神经网络是强大的模型,可以学习网络中的复杂模式。在本文中,我们将介绍如何为同构图数据构造PyTorch Data对象,然后训练不同类型的神经网络来预测节点所属的类。这种类型的预测问题通常被称为节点分类。我们将使用来自Benedek...

2024-05-24 17:01:25 7

转载 提高光学数据集利用率,天大团队提出增强光谱预测效果 AI 模型

来源:ScienceAI本文约1500字,建议阅读5分钟近日,天津大学激光与光电子研究所吴亮副教授、姚建铨院士团队联合自然语言处理实验室熊德意教授团队报道了一种使用多频率补充输入的深度学习模型来增强光谱预测效果的方案。该方案可有效地提高现有光学数据集的利用率,在不额外增加训练成本的基础上,增强了与超表面结构对应的光谱响应的预测效果。相关研究成果以「Enhanced spectrum predi...

2024-05-24 17:01:25 15

转载 蚂蚁多模态团队在视频多模态方向的技术探索

本文约14500字,建议阅读15+分钟本文将分享蚂蚁多模态认知团队过去一年在视频多模态检索领域的研究成果。[ 导读 ] 本文将分享蚂蚁多模态认知团队过去一年在视频多模态检索领域的研究成果。文章主要围绕如何提升视频文本语义检索效果,及如何高效地进行视频同源检索这两项研究工作展开。主要包括以下几大部分:1.概述2.视频-文本语义检索3.视频-视频同源搜索4.总结5.Q&A01、概述...

2024-05-24 17:01:25 18

转载 【牛津大学博士论文】图神经网络鲁棒机器学习

来源:专知本文约1000字,建议阅读5分钟为了在关键安全领域如医疗或自动驾驶中应用神经网络,我们需要能够分析它们对抗对抗性攻击的鲁棒性。为了在关键安全领域如医疗或自动驾驶中应用神经网络,我们需要能够分析它们对抗对抗性攻击的鲁棒性。这些攻击通过添加小的、精心选择的扰动来扰乱自然图像,这些扰动对人眼来说几乎是察觉不到的。训练有素的神经网络尽管在训练和验证准确度很高,但经常会错误分类许多这些受扰动的...

2024-05-23 17:00:59 8

转载 GPT-4o深夜炸场!AI实时视频通话丝滑如人类,Plus功能免费可用,奥特曼:《她》来了...

来源:量子位(公众号ID:QbitAI)作者:梦晨,克雷西本文约1800字,建议阅读10分钟不开玩笑,电影《她》真的来了。OpenAI最新旗舰大模型GPT-4o,不仅免费可用,能力更是横跨听、看、说,丝滑流畅毫无延迟,就像在打一个视频电话。现场直播的效果更是炸裂:它能感受到你的呼吸节奏,也能用比以前更丰富的语气实时回复,甚至可以做到随时打断。GPT-4o里的“o”是Omni的缩写,也就是“全...

2024-05-23 17:00:59 17

转载 从IoTDB的发展回顾时序数据库演进史

本文约2500字,建议阅读5分钟面向工业物联网时代,以 IoTDB 为代表的时序数据库加速发展。时序数据的主要产生来源之一是设备与传感器,具有监测点多、采样频率高、存储数据量大等多类不同于其他数据类型的特性,从而导致数据库在实现高通量写入、存储成本、实时查询等多个维度存在管理难点。针对这些特性与难点,专门针对时序数据管理构建的时序数据库也在逐步成熟。以 IoTDB 为代表的国产时序数据库面向工业...

2024-05-22 17:01:34 7

转载 图像去模糊研究综述

来源:专知本文为论文介绍,建议阅读5分钟图像去模糊算法的研究发展不仅为计算机视 觉领域的其他任务提供了便利,同时也为生活领域提供了便捷和保障。图像模糊是指在图像捕捉或传输过程中,由于镜头或相机运动、光照条件等因素导致图像失去清晰度和细 节,从而影响图像的质量和可用性。为了消除这种影响,图像去模糊技术应运而生。其目的在于通过构建计算机数 学模型来衡量图像的模糊信息,从而自动预测去模糊后的清晰图像...

2024-05-22 17:01:34 14

转载 一图胜千言!机器学习模型可视化!!

本文约12000字,建议阅读10分钟本文将深入探讨机器学习可视化的艺术,探索帮助我们理解复杂数据驱动系统的各种技术。机器学习模型有强大而复杂的数学结构。了解其错综复杂的工作原理是模型开发的一个重要方面。模型可视化对于获得见解、做出明智的决策和有效传达结果至关重要。在本文中,我们将深入探讨机器学习可视化的艺术,探索帮助我们理解复杂数据驱动系统的各种技术。文末,还提供了一个可视化示例的实践代码。什么...

2024-05-22 17:01:34 19

转载 微软让MoE长出多个头,大幅提升专家激活率

来源:机器之心本文约3000字,建议阅读6分钟本文介绍了MH-MoE 的方法。‍‍‍‍‍‍‍‍‍‍‍‍‍MH-MoE 能优化几乎所有专家,实现起来非常简单。混合专家(MoE)是个好方法,支持着现在一些非常优秀的大模型,比如谷歌家的 Gemini 1.5 以及备受关注的 Mixtral 8x7B。稀疏混合专家(SMoE)可在不显著增加训练和推理成本的前提下提升模型的能力。比如 Mixtral 8...

2024-05-21 17:01:47 8

转载 论文 | GraNNDis:大型集群上深度 GNN 的高效统一分布式训练框架

本文约2500字,建议阅读5分钟本文提出了 GraNNDis,这是一种高效的分布式 GNN 训练框架,用于在大型图和深层上训练 GNN。图神经网络(GNN)是深度学习中发展最快的领域之一。根据数据集的增长和 GNN 使用的模型大小,一个重要的问题是几乎不可能将整个网络保留在 GPU 内存上。在众多尝试中,分布式训练是解决该问题的一种流行方法。然而,由于 GNN 的性质,现有的分布式方法的可扩展性...

2024-05-21 17:01:47 12

转载 又可以白嫖了,Hugging Face推出ZeroGPU提供共享的40G A100,总计价值1000万美元

本文为约1000字,建议阅读5分钟这种灵活的管理不仅提高了资源的利用效率,还大幅降低了成本,使得更多的用户和应用能够同时利用这些高价值的计算资源。在AI领域,获取高性能计算资源常常成为小型开发者和初创企业的一大难题。为了解决这一问题,机器学习领域的领军企业Hugging Face最近推出了名为ZeroGPU的新技术,旨在通过其平台Spaces提供免费且更加灵活的GPU访问服务,支持更多开发者和研...

2024-05-21 17:01:47 26

转载 问题的关键是找到关键的指标

本文约2900字,建议阅读8分钟本文与你分享寻找核心变量并量化的经验。在解决复杂问题的过程中,找到核心变量的重要性不言而喻。这些核心变量直接影响问题的表现和解决方案的有效性。之前的文章我也提到过数学建模的三要素之一就是找到核心变量。如果可以的话(当然也看量化能力),就要找到核心变量的量化方法,或者说是转化为一个指标。管理学大师彼得·德鲁克曾经说过:如果你无法量化它,你就无法管理它。那我们该如何找...

2024-05-20 17:01:43 9

转载 【ICML2024】使用大型语言模型通过自对齐为机器人技能学习奖励

来源:专知本文为论文介绍,建议阅读5分钟我们提出了一种在无人参与的情况下更高效学习奖励的方法。学习奖励函数仍是让机器人掌握广泛技能的瓶颈。大型语言模型(LLM)包含有价值的与任务相关的知识,这可能有助于学习奖励函数。然而,所提出的奖励函数可能不够精确,因而效果不佳,需要进一步与环境信息相结合。我们提出了一种在无人参与的情况下更高效学习奖励的方法。我们的方法包括两个组成部分:首先使用LLM提出奖励...

2024-05-20 17:01:43 11

原创 原创 | GPT模型的前世今生

作者:李媛媛本文约3000字,建议阅读6分钟本文为你介绍GPT模型的前世今生。1 GPT模型概述GPT模型,全称Generative Pre-trained Transformer,由OpenAI团队开发,是一种基于深度学习的自然语言处理模型。通过无监督学习的方式,对大规模文本进行学习和抽象概括,进而通过微调的方式用于各种特定的自然语言处理任务。GPT模型的核心是Transformer架构,这...

2024-05-20 17:01:43 257

转载 【普林斯顿博士论文】语言智能体: 从下一词元预测到数字自动化

来源:专知本文约1100字,建议阅读5分钟本论文引入了“语言代理”,这是一类新的代理,它们利用大型语言模型(LLMs)进行推理以采取行动,标志着与传统通过广泛规则设计或学习的代理的一种转变。构建能与世界互动的自主代理是人工智能(AI)的核心。本论文引入了“语言代理”,这是一类新的代理,它们利用大型语言模型(LLMs)进行推理以采取行动,标志着与传统通过广泛规则设计或学习的代理的一种转变。它分为三...

2024-05-19 17:38:13 7

转载 整合文本和知识图谱嵌入提升RAG的性能

来源:DeepHub IMBA本文约4600字,建议阅读10分钟本文中我们将文本和知识图谱结合,来提升我们RAG的性能。我们以前的文章中介绍过将知识图谱与RAG结合的示例,在本篇文章中我们将文本和知识图谱结合,来提升我们RAG的性能。文本嵌入的RAG文本嵌入是单词或短语的数字表示,可以有效地捕捉它们的含义和上下文。可以将它们视为单词的唯一标识符——捕获它们所代表的单词的含义的简洁向量。这些嵌入...

2024-05-19 17:38:13 8

转载 通知 | 清华大学《高端装备实践》课开始报名啦!

《高端装备实践》是由机械系开设的,面向全校研究生开放的跨院系、跨专业的基地实践课程,旨在提升研究生专业实践能力,培养产学研用一体化思维能力。在实践过程中,通过相关行业专家授课和与校内其他院系研究生的跨专业组织形式,加强研究生对高端装备及其相关领域的深入了解、提高研究生团队合作能力及职业胜任力。通过该课程实践考核的学生可获得清华大学研究生院和实践基地联合颁发的《高端装备实践》证书。实践表现优秀,还可...

2024-05-19 17:38:13 9

转载 轻松上手!手机上部署Phi3、Llama3最新大模型全攻略!

本文约3100字,建议阅读10分钟本文在此会介绍几个适合私人部署的最新大模型,然后手把手部署到电脑及手机。大模型无疑是此次AI革命的主角,大模型基于Scaling Law(缩放定律)。简单的说,就是数据越多,参数越大,算力越强,模型最终的能力就越强。随着模型参数和预训练数据规模的增加,模型能力与任务效果不断改善,展示出了一些小规模模型所不具备的“涌现能力”。随着大模型时代的逐步来临,以ChatG...

2024-05-19 17:38:13 41

转载 【伯克利博士论文】零样本机器人感知的视觉-语言表示

来源:专知本文约2000字,建议阅读5分钟随着机器人系统进入现实世界,创建能够适应真实世界的机器人感知系统的挑战仍然存在。现实世界包含视觉和语义上多样化的环境,这些环境中充满了更加多样化的物体。我们可以利用大型视觉-语言模型(VLMs)来应对这种多样性,这些模型最近在捕捉现实世界规模的语义方面显示出了前景,因为它们是在互联网规模的数据上预训练的。我们希望依赖这些VLMs而无需进行额外的环境特定...

2024-05-18 17:04:55 9

转载 李飞飞团队 AI4S 最新洞察:16 项创新技术汇总,覆盖生物/材料/医疗/问诊……...

本文约9000字,建议阅读15分钟本文介绍了李飞飞团队AI4S 最新洞察:16 项创新技术汇总。斯坦福大学 HAI 研究中心重磅发布了《2024年人工智能指数报告》,新增章节探讨了 AI 在科研与医学领域的应用。不久前,斯坦福大学 Human-Center Artificial Intelligence (HAI) 研究中心重磅发布了《2024年人工智能指数报告》。作为斯坦福 HAI 的第七部力...

2024-05-18 17:04:55 15

转载 BiTCN:基于卷积网络的多元时间序列预测

来源:DeepHub IMBA本文约3300字,建议阅读10分钟本文将介绍了BiTCN模型,通过利用两个时间卷积网络(TCN),该模型可以编码过去和未来的协变量,同时保持计算效率。在时间序列预测领域中,模型的体系结构通常依赖于多层感知器(MLP)或Transformer体系结构。基于mlp的模型,如N-HiTS, TiDE和TSMixer,可以在保持快速训练的同时获得非常好的预测性能。基于Tr...

2024-05-18 17:04:55 25

转载 GPT-4理解武林外传中的含蓄表述,达人类水平

本文约3300字,建议阅读10分钟LLMs在面对类似的会话隐喻时能理解到说话人真正的含义吗?在人际交谈中,特别是在使用中文这样博大精深的语言时,人们往往不会直接回答问题,而是采用含蓄、隐晦或间接的表达方式。人类根据以往的经验或是对说话者的了解可以对一些言外之意做出准确的判断,比如我们小时候经历过无数次的对话情景:“妈妈,我的书放哪啦?”“在我手上,来拿嘛!”又或是:“妈妈,今天我想吃红烧肉可以吗...

2024-05-17 17:03:45 8

转载 Nature论文:斯坦福团队研发出普通眼镜尺寸的新一代AR头盔

来源:头部科技大数据文摘本文约1800字,建议阅读5分钟已经有太多AR设备出现,但都不算成功,斯坦福希望能改变世界。已经有太多AR设备出现,但都不算成功,斯坦福希望能改变世界。来自斯坦福大学的科研团队最近展示一件新产品,它是一款原型AR头盔,不同之处在于,这款头盔十分轻盈,外观如同普通眼镜,头盔用全息成像技术将彩色3D动态图像投射至镜片。因为采用了新方法,原型AR头盔紧凑、舒适,可以续航一天...

2024-05-17 17:03:45 15

转载 太强了!10大开源大模型!

本文约2700字,建议阅读9分钟本文将详细介绍最新的顶级开源LLMs大模型。大型语言模型(LLMs)无疑是人工智能革命中的核心驱动力,它们建立在Transformer架构的稳固基石之上,并根据缩放定律不断演进。简而言之,缩放定律揭示了一个重要原则:随着数据规模的扩大、参数数量的增加以及计算能力的提升,模型的能力将迈向新的巅峰。正是通过预先训练海量的文本数据,LLMs展现出了卓越的对话和任务处理能...

2024-05-17 17:03:45 17

转载 Kaggle知识点:类别变量处理与精度对比

来源:Coggle数据科学本文约1200字,建议阅读4分钟本文将使用埃姆斯爱荷华州房屋数据集进行房价分析。在这个例子中,我们将比较使用不同的编码策略来处理分类特征时,HistGradientBoostingRegressor 的训练时间和预测性能。具体来说,我们将评估以下几种方法:删除分类特征;使用 OneHotEncoder;使用 OrdinalEncoder,将分类特征视为有序、等距的量;...

2024-05-16 17:31:35 9

转载 万字长文总结大模型知识编辑领域最新研究进展

本文约14000字,建议阅读5分钟本文调研了近期的大模型知识编辑的部分工作,分为大模型知识编辑新技术、新设定和挑战与局限性三部分,最后进行总结与展望。随着深度学习与预训练技术的快速发展,大模型如 ChatGPT、Mistral、LLaMA、ChatGLM、文心一言、通义等在自然语言处理领域已经取得了显著的突破。大模型通过将海量的、以文本序列为主的世界知识预先学习进神经网络中,并通过参数化空间实现...

2024-05-16 17:31:35 14

转载 基于深度学习的中文文本分类综述

来源:专知本文为论文介绍,建议阅读5分钟本文将简要介绍传统机器学习的文本分类方法, 详细阐述使用深度学习的文本分类方法。大数据时代,随着社交媒体的不断普及,在网络以及生活中,各类文本数据日益增长,采用文本分类技术对文本数据进行分析和管理具有重要的意义。文本分类是自然语言处理领域中的一个基础研究内容,在给定标准下,根据内容对文本进行分类,文本分类的场景应用十分广泛,如情感分析、话题分类和关系分类...

2024-05-16 17:31:35 14

转载 直播预告|2024 AI+研发数字峰会(AiDD)主论坛即将开启

伴随着人工智能(AI,特别是大语言模型)在众多行业领域的广泛应用及其带来的颠覆性变革,软件的开发模式、方式和实践都可能会发生巨大的变化。为助力更多企业在人工智能的浪潮中乘风破浪,“AI+研发数字峰会(AiDD)”应运而生,旨在帮助更多企业借助AI技术,使计算机能够更深入地认知现实世界,推动研发全面进入数智化时代。大会论坛Al原生应用开发黄川百度搜索主任架构师探讨基于A技术、LM开发应用软件的思想、...

2024-05-16 17:31:35 18

转载 【ICML2024】双曲几何潜在扩散模型用于图生成

来源:专知本文为论文介绍,建议阅读5分钟我们提出了一种新颖的几何潜在扩散框架 HypDiff。扩散模型在计算机视觉领域取得了重大进展,最近在社区内引发了对其在图生成中的应用的广泛兴趣。现有的离散图扩散模型表现出较高的计算复杂性和较低的训练效率。直接在潜在空间中扩散图是一种更优越且自然的方式。然而,由于图的非欧几里得结构在潜在空间中并不各向同性,现有的潜在扩散模型难以有效捕获和保留图的拓扑信息。为...

2024-05-15 17:02:37 15

转载 循环编码:时间序列中周期性特征的一种常用编码方式

来源:Deephub Imba本文约2500字,建议阅读5分钟本文介绍了时间序列预测或理解展示周期性特征的序列。‍在深度学习或神经网络中,"循环编码"(Cyclical Encoding)是一种编码技术,其特点是能够捕捉输入或特征中的周期性或循环模式。这种编码方法常用于处理具有周期性行为的任务,比如时间序列预测或理解展示周期性特征的序列。循环编码的核心思想是将数据的周期性特征转化为网络能够理解...

2024-05-15 17:02:37 17

原创 原创|手把手教你构建评分卡模型

作者:胡赟豪‍‍‍‍本文约2800字,建议阅读5分钟本文介绍了构建评分卡模型。‍‍‍一、背景在各种机器学习、深度学习模型快速发展的当下,评分卡模型作为一种可解释机器学习模型,仍然在金融、营销等领域被广泛使用。这一模型通过构建一组基于输入变量的评分规则,能够直观地对样本进行评分,非常易于理解和操作。举一个金融信用风险评分卡的例子,要判断一笔贷款能够被按时偿还的风险大小,可以设置这样一个评分卡:是...

2024-05-15 17:02:37 962

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除